CAREER: High-throughput Single-cell Biophysics

职业:高通量单细胞生物物理学

基本信息

  • 批准号:
    1150588
  • 负责人:
  • 金额:
    $ 44.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

1150588Di CarloThe mechanical properties of cells, the underlying origins of these properties in cytoskeletal & intracellular structure, and the relationship of this structure with disease states has been a rapidly expanding area of research. Purely biophysical (mechanical) measurements can help uncover fundamental associations between disease and cell architecture, and these properties have been shown to be powerful label-free biomarkers for cell phenotype. For example, a measure of shape changes in response to force (deformability) has been shown to be indicative of malignant transformation in cell lines and human biopsy samples. However, previous studies have been limited to proof-of-concept applications by the low-throughput analytical technologies employed. Applications in biophysics research, clinical diagnostics or drug screening necessarily require large sample sizes to obtain statistically significant data - leading to sensitive and specific results. The PI aims to address the low throughput and complexity of current measurement techniques using a next generation instrument to assay the mechanical properties of thousands of single cells in minutes achieving the ease-of-use and throughput of flow cytometry. The PI has started to address this challenge using continuous microfluidic stretching of cells in an extensional (purely stretching) flow - i.e. "Deformability Cytometry". The PI has demonstrated the feasibility of this approach for deforming 1000 cells per second, which is orders of magnitude higher than gold standard mechanical measurement techniques. Extending the development of this instrument, the PI proposes to provide high-throughput and systematic data to the cell biophysics and bioengineering communities that can aid in understanding the roles of biomolecules in cellular integrity, and ultimately suggest currently unknown connections to clinical diagnostic applications.Intellectual MeritThe mechanical properties of cells have been thought to be largely determined by cytoskeletal elements with the highest stiffness (namely actin and microtubules). Recently, intermediate filaments, nuclear envelope proteins and chromatin structure have been suggested to contribute significantly to cell mechanical properties. For example, pluripotent stem cells and activated lymphocytes are known to lack the nuclear membrane proteins lamin A/C and have less condensed chromatin. It remains an open question whether these characteristics are responsible for the high observed deformability in these cells. The PI's innovation is to investigate the combination of these elements on whole-cell large-scale deformation, without bias for dominant origins in the traditionally examined cytoskeleton. It is clear that the interplay between these elements may control mechanical behavior in some cells, while a sole element may dominate response in other cells (for example chromatin structure in lymphocytes with large nuclear to cytoplasmic ratios). A simple to use and high-throughput instrument will allow a systematic survey of these contributors, alone and as part of a potential linked mechanical network, which will be a boon to the bioengineering and biophysics communities attempting to address the fundamental origin of cell mechanical properties.Broader ImpactsA label-free mechanical measurement of cell state can help address the high cost of healthcare by eliminating the cost of antibody labels and reducing the technician labor associated with preparing labeled samples for diagnostics. Further, such an approach could improve quality of life by increasing our diagnostic capabilities - leading to the identification of the correct treatment quickly. Educational and dissemination activities will be seamlessly integrated with the proposed research. These activities will be focused in areas addressing a variety of stakeholders including the (i) undergraduate and graduate student community, (ii) the microfluidics community, and (iii) the broader public. The four education and dissemination activities include: (1) Graduate and undergraduate exposure to high-speed camera operation and microfluidics in collaboration with UCLA's CEED (Center for Excellence in Engineering and Diversity). (2) Summer undergraduate internships to assist financially disadvantaged undergraduates to become involved in research. (3) An online community for sharing and discussion of microfluidic designs. (4) An online YouTube gallery of "cool" slow-motion scientific and illustrative videos (e.g. water balloons filled with different viscosity fluids thrown against a wall) to engage and excite the public.
1150588 Di Carlo细胞的机械性质、细胞骨架细胞内结构中这些性质的潜在起源以及这种结构与疾病状态的关系一直是一个快速扩展的研究领域。 生物物理(机械)测量可以帮助揭示疾病和细胞结构之间的基本关联,这些特性已被证明是细胞表型的强大的无标记生物标志物。 例如,响应于力的形状变化(变形性)的量度已经显示为指示细胞系和人活检样品中的恶性转化。 然而,以前的研究一直局限于概念验证的应用程序所采用的低通量分析技术。 在生物物理学研究、临床诊断或药物筛选中的应用必然需要大样本量以获得统计学上重要的数据-从而导致敏感和具体的结果。 PI旨在解决当前测量技术的低通量和复杂性,使用下一代仪器在几分钟内测定数千个单细胞的机械特性,实现流式细胞术的易用性和通量。 PI已经开始使用细胞在延伸(纯粹拉伸)流中的连续微流体拉伸来解决这一挑战-即“变形性细胞测定法”。 PI已经证明了这种方法每秒变形1000个细胞的可行性,这比金标准机械测量技术高出几个数量级。 为了扩展该仪器的开发,PI建议为细胞生物物理学和生物工程界提供高通量和系统的数据,这些数据可以帮助理解生物分子在细胞完整性中的作用,并最终提出了目前尚不清楚的临床诊断应用的联系。智力优点细胞的机械性能一直被认为在很大程度上是由具有最高刚度的细胞骨架元素决定的(即肌动蛋白和微管)。 最近,中间丝,核膜蛋白和染色质结构已被认为是有助于显着的细胞力学性能。 例如,已知多能干细胞和活化的淋巴细胞缺乏核膜蛋白核纤层蛋白A/C并且具有较少的浓缩染色质。 这仍然是一个悬而未决的问题,这些特征是否是负责在这些细胞中观察到的高变形性。PI的创新是研究这些元素在全细胞大规模变形上的组合,而不偏向传统检查的细胞骨架中的主要来源。 很明显,这些元素之间的相互作用可以控制某些细胞中的机械行为,而单个元素可以主导其他细胞中的反应(例如,具有大的核质比的淋巴细胞中的染色质结构)。 一个简单易用和高通量的仪器将允许系统地调查这些贡献者,单独和作为一个潜在的连接机械网络的一部分,这将是一个布恩的生物工程和生物物理学社区试图解决的基本起源细胞机械性能。细胞状态的免费机械测量可以通过消除抗体标记的成本和减少与制备相关的技术人员劳动力来帮助解决医疗保健的高成本用于诊断的标记样本。 此外,这种方法可以通过提高我们的诊断能力来改善生活质量-从而快速确定正确的治疗方法。 教育和传播活动将与拟议的研究无缝结合。 这些活动将集中在解决各种利益相关者的领域,包括(i)本科生和研究生社区,(ii)微流体社区,以及(iii)更广泛的公众。 四项教育和传播活动包括:(1)与加州大学洛杉矶分校的CEED(工程和多样性卓越中心)合作,让研究生和本科生接触高速摄像机操作和微流体。(2)暑期本科生实习,以帮助经济困难的本科生参与研究。 (3)一个用于分享和讨论微流体设计的在线社区。(4)一个在线YouTube画廊的“酷”慢动作科学和说明性的视频(例如,水气球充满不同粘度的流体扔在墙上),以吸引和激发公众。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dino Di Carlo其他文献

Rapid deformability cytometry for tissue biopsies
用于组织活检的快速变形细胞术
  • DOI:
    10.1038/s41551-023-01110-5
  • 发表时间:
    2023-10-30
  • 期刊:
  • 影响因子:
    26.600
  • 作者:
    Dino Di Carlo
  • 通讯作者:
    Dino Di Carlo
Cytological and Cytogenetic Analysis of Large Circulating Cells from Blood
  • DOI:
    10.1016/j.jasc.2014.09.191
  • 发表时间:
    2014-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Derek Go;Sean O'Byrne;Rachel Conrad;Jianyu Rao;Nagesh Rao;Edward Garon;Jonathan Goldman;Rajan Kulkarni;Elodie Sollier;Dino Di Carlo
  • 通讯作者:
    Dino Di Carlo
Sequentially addressable dielectrophoretic array for high-throughput large-droplet sorting
用于高通量大液滴分选的顺序可寻址介电泳阵列
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akihiro Isozaki;Yuta Nakagawa;Mun Hong Loo;Dino Di Carlo;and Keisuke Goda
  • 通讯作者:
    and Keisuke Goda
Machine learning in point-of-care testing: innovations, challenges, and opportunities
即时检验中的机器学习:创新、挑战与机遇
  • DOI:
    10.1038/s41467-025-58527-6
  • 发表时间:
    2025-04-02
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Gyeo-Re Han;Artem Goncharov;Merve Eryilmaz;Shun Ye;Barath Palanisamy;Rajesh Ghosh;Fabio Lisi;Elliott Rogers;David Guzman;Defne Yigci;Savas Tasoglu;Dino Di Carlo;Keisuke Goda;Rachel A. McKendry;Aydogan Ozcan
  • 通讯作者:
    Aydogan Ozcan
High-throughput , Microfluidic Monitoring of Enzymatic Activity for Personalized Medicine
个性化医疗酶活性的高通量、微流体监测
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaideep S. Dudani;Derek Go;Ankit Gupta;G. Kocharyan;Roxanne Loo;Nova Wang;Dino Di Carlo
  • 通讯作者:
    Dino Di Carlo

Dino Di Carlo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dino Di Carlo', 18)}}的其他基金

2017 Physics and Chemistry of Microfluidics Gordon Research Conference
2017年微流控物理与化学戈登研究会议
  • 批准号:
    1664331
  • 财政年份:
    2017
  • 资助金额:
    $ 44.37万
  • 项目类别:
    Standard Grant
EAGER: Evolving Multipurpose Biological Magnetic Nanoparticles
EAGER:不断发展的多用途生物磁性纳米颗粒
  • 批准号:
    1403984
  • 财政年份:
    2014
  • 资助金额:
    $ 44.37万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Sculpting fluid flow using a programmed sequence of micro-pillars
合作研究:CDS
  • 批准号:
    1307550
  • 财政年份:
    2013
  • 资助金额:
    $ 44.37万
  • 项目类别:
    Standard Grant
USA-JAPAN International Nano-Biotechnology Workshop
美国-日本国际纳米生物技术研讨会
  • 批准号:
    1406966
  • 财政年份:
    2013
  • 资助金额:
    $ 44.37万
  • 项目类别:
    Standard Grant

相似国自然基金

转录因子DNA结合谱绘制新方法及其应用研究
  • 批准号:
    61171030
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

High-throughput single-molecule directed evolution
高通量单分子定向进化
  • 批准号:
    DP240101399
  • 财政年份:
    2024
  • 资助金额:
    $ 44.37万
  • 项目类别:
    Discovery Projects
High-throughput single neuron resolution mapping of connecopathies in animal models of neurodevelopmental disorders
神经发育障碍动物模型中连接病的高通量单神经元分辨率图谱
  • 批准号:
    2887157
  • 财政年份:
    2023
  • 资助金额:
    $ 44.37万
  • 项目类别:
    Studentship
Vesicle Epitope Transcript sequencing (VET-seq): Droplet-based Multiomic Profiling Platform for Single Vesicle Analysis
囊泡表位转录本测序 (VET-seq):用于单囊泡分析的基于液滴的多组学分析平台
  • 批准号:
    10613257
  • 财政年份:
    2023
  • 资助金额:
    $ 44.37万
  • 项目类别:
Cellular FM-radios: seeing, probing, and perturbing single-cell protein activity dynamics in biological systems with frequency-barcoded spatiotemporal signaling circuits
细胞调频无线电:利用频率条形码时空信号电路观察、探测和扰动生物系统中的单细胞蛋白质活性动态
  • 批准号:
    10685132
  • 财政年份:
    2023
  • 资助金额:
    $ 44.37万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 44.37万
  • 项目类别:
A Single-Crystal X-ray Diffractometer for High-Power, High-Throughput Chemical Crystallography
用于高功率、高通量化学晶体学的单晶 X 射线衍射仪
  • 批准号:
    EP/X013332/1
  • 财政年份:
    2023
  • 资助金额:
    $ 44.37万
  • 项目类别:
    Research Grant
Single molecule detection of L1 insertions and intermediates
L1 插入和中间体的单分子检测
  • 批准号:
    10662586
  • 财政年份:
    2023
  • 资助金额:
    $ 44.37万
  • 项目类别:
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
  • 批准号:
    10662975
  • 财政年份:
    2023
  • 资助金额:
    $ 44.37万
  • 项目类别:
Resolving Oral Bacteria Interactions with a High-Throughput Low-Cost Single-Cell Transcriptomics Approach
采用高通量低成本单细胞转录组学方法解决口腔细菌相互作用
  • 批准号:
    10678379
  • 财政年份:
    2023
  • 资助金额:
    $ 44.37万
  • 项目类别:
Microsatellite Instability Sequencing via Single-Molecule DNA Re-Reading
通过单分子 DNA 重读进行微卫星不稳定性测序
  • 批准号:
    10822077
  • 财政年份:
    2023
  • 资助金额:
    $ 44.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了