Collaborative Research: Optimized Harvesting of Hydrokinetic Power by Ocean Current Turbine Farms Using Integrated Control
合作研究:利用集成控制优化洋流涡轮机发电场的水动力发电
基本信息
- 批准号:1307889
- 负责人:
- 金额:$ 15.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-10-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
INTELLECTUAL MERIT: The modern world needs a diverse energy portfolio and during the past decade, significant investments have been committed to harnessing marine renewable energy sources which have a theoretical potential to far exceed the world's present power generation needs. Of these untapped resources, open ocean currents, or predominantly unidirectional large scale circulations located near eastern coastlines of most continents, are located in deeper ocean areas (250m), but flow near the sea surface. Various commercial interests now propose to install turbines to convert these vast kinetic energy reserves into usable electrical power, but thus far no large-scale commercial production prototypes have been constructed or tested in relevant environments. Perceiving the value these resources and to nurture their commercial development, the U.S. Department of Energy has designated three national centers to investigate solutions that help accelerate the pace at which marine renewables deliver base-load power to the grid and to provide testing capacities for evolving technologies. One such center, the Southeast National Renewable Energy Center (SNMREC) at Florida Atlantic University (FAU), is specifically tasked with enabling commercialization of open ocean current technologies.A partnership between the SNMREC, the School of Naval Architecture and Marine Engineering at the University of New Orleans (UNO) and the Center for Energy Harvesting Materials andSystems (CEHMS) at Virginia Polytechnic Institute and State University (VT) has been organized to leverage the strengths of each institution to achieve the goal of helping the emerging ocean current energy industry overcome specific technical hurdles to promote and enable eventual commercialization. Future farms of ocean current turbines (OCTs) will be strategically located in the most energy dense portions of ocean current flows (near the surface, but anchored in deep ocean areas) to maximize power generation. To achieve positioning stability and to maximize generated power, OCTs are expected to efficiently avoid the wakes of nearby turbines and destructive environmental forces, but seek high energy density and consistent flow. Thus, these turbines must achieve autonomous and integrated electromechanical and position control. Unfortunately, because early commercial turbine design efforts are still focused on energy conversion demonstrations, small-scale validation, and hardware suitability for the operational environment, no significant effort has yet been applied to develop joint motion control for farms of OCTs, especially when coupled with power generation considerations. This effort therefore proposes to develop autonomous electromechanical and flight control systems to maximize the generated electricity by a single OCT unit, and then test effectiveness with a physics-based numerical simulation.Control optimization will involve active OCT rotor blade pitch angle control by leveraging helicopter flight control and modern multivariable constrained control techniques. The solutions will then be extrapolated to a farm of OCTs, which will require novel advanced collaborative control methodologies and will be validated with physics-based numerical simulation.BROADER IMPACTS: For OCT concepts to become commercially viable, motion control and power generation optimization systems are needed. This project will achieve this requirement, will advance turbine modeling science, and will advance modern control design. This effort will directly enable the commercialization of ocean current energy conversion and will bring focus upon a new control and optimization application which will inspire significant innovation beyond this work. Major findings from this project will be directly integrated with the SNMREC, UNO and VT active outreach and education development programs which regularly share research outcomes with the public through presentations, workshops, the web, and conferences. A K-12 STEM enhancement curriculum and trained teachers in culturally diverse school districts will further benefit from this work. The university partners have also developed cooperative laboratory tools planned for direct incorporation into undergraduate curriculum. UNO, VT and FAU promote dissemination of applicable research data, helping prepare a future professional workforce toward a robust marine renewable energy sector.
知识专长:现代世界需要多样化的能源组合,在过去十年中,大量投资致力于利用海洋可再生能源,这些能源理论上有潜力远远超过世界目前的发电需求。在这些未开发的资源中,开放洋流或位于大多数大陆东部海岸线附近的主要单向大规模环流位于更深的海洋区域(250米),但靠近海面流动。各种商业利益现在建议安装涡轮机,以将这些巨大的动能储备转化为可用的电力,但迄今为止还没有大规模的商业生产原型在相关环境中建造或测试。认识到这些资源的价值并促进其商业发展,美国能源部指定了三个国家中心来研究解决方案,以帮助加快海洋可再生能源向电网提供基本负荷电力的速度,并为不断发展的技术提供测试能力。其中一个中心,位于佛罗里达大西洋大学(FAU)的东南国家可再生能源中心(SNMREC),专门负责开放洋流技术的商业化。新奥尔良大学(UNO)的海军建筑和海洋工程学院以及弗吉尼亚理工学院和州立大学(VT)的能量收集材料和系统中心(CEHMS)已组织了一个讲习班,以利用每个机构的优势,实现帮助新兴洋流能源工业克服具体技术障碍,促进和实现最终商业化的目标。未来的洋流涡轮机(OCT)农场将战略性地位于洋流中能量最密集的部分(靠近水面,但锚定在深海区域),以最大限度地提高发电量。为了实现定位稳定性和最大化发电功率,OCT有望有效地避免附近涡轮机的尾流和破坏性的环境力,但寻求高能量密度和一致的流量。因此,这些涡轮机必须实现自主和集成的机电和位置控制。不幸的是,由于早期的商业涡轮机设计工作仍然集中在能量转换演示、小规模验证和对操作环境的硬件适用性上,因此尚未做出重大努力来开发用于OCT农场的联合运动控制,特别是当与发电考虑相结合时。因此,这项工作提出了开发自主机电和飞行控制系统,以最大限度地提高发电量的一个单一的OCT单元,然后测试有效性与基于物理的数值模拟控制优化将涉及主动OCT旋翼桨距角控制,利用直升机飞行控制和现代多变量约束控制技术。这些解决方案将被推广到一个OCT农场,这将需要新的先进的协同控制方法,并将通过基于物理的数值模拟进行验证。更广泛的影响:为了使OCT概念在商业上可行,需要运动控制和发电优化系统。本课题的研究将达到这一要求,将促进涡轮机建模科学的发展,并将促进现代控制设计的发展。这一努力将直接实现洋流能量转换的商业化,并将重点放在新的控制和优化应用上,这将激发这项工作之外的重大创新。该项目的主要研究结果将直接与SNMREC,UNO和VT积极的外联和教育发展计划相结合,这些计划通过演讲,研讨会,网络和会议定期与公众分享研究成果。K-12 STEM强化课程和文化多样性学区的训练有素的教师将进一步受益于这项工作。大学合作伙伴还开发了合作实验室工具,计划直接纳入本科课程。联合国办事处,VT和FAU促进适用的研究数据的传播,帮助准备一个强大的海洋可再生能源部门的未来专业劳动力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James VanZwieten其他文献
Design and testing of a Hardware-in-the-Loop system for a grid integrated Ocean Current Turbine
- DOI:
10.1016/j.renene.2024.121689 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Sasha Fung;Yufei Tang;Carter Nichols;James VanZwieten;Hassan Mokari;Gabriel Alsenas - 通讯作者:
Gabriel Alsenas
Drifter-based global ocean current energy resource assessment
基于漂流器的全球洋流能源资源评估
- DOI:
10.1016/j.renene.2025.122576 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.100
- 作者:
Mahsan Sadoughipour;James VanZwieten;Yufei Tang - 通讯作者:
Yufei Tang
Rotor blade imbalance fault detection for variable-speed marine current turbines via generator power signal analysis
- DOI:
10.1016/j.oceaneng.2021.108666 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:
- 作者:
Brittny Freeman;Yufei Tang;Yu Huang;James VanZwieten - 通讯作者:
James VanZwieten
James VanZwieten的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James VanZwieten', 18)}}的其他基金
REU Site: Marine Renewable Energy
REU 网站:海洋可再生能源
- 批准号:
1950123 - 财政年份:2020
- 资助金额:
$ 15.51万 - 项目类别:
Standard Grant
Collaborative Research: Design and Control of Networked Offshore Hydrokinetic Power-Plants with Energy Storage
合作研究:网络化海上水力储能电站的设计与控制
- 批准号:
1809164 - 财政年份:2018
- 资助金额:
$ 15.51万 - 项目类别:
Standard Grant
REU Site: Removing Barriers to Ocean Current Based Electricity Production through Undergraduate Research
REU 网站:通过本科生研究消除洋流发电的障碍
- 批准号:
1659468 - 财政年份:2017
- 资助金额:
$ 15.51万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
- 批准号:
2307979 - 财政年份:2023
- 资助金额:
$ 15.51万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 15.51万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 15.51万 - 项目类别:
Standard Grant
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
- 批准号:
2307978 - 财政年份:2023
- 资助金额:
$ 15.51万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
- 批准号:
2212200 - 财政年份:2022
- 资助金额:
$ 15.51万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
- 批准号:
2212201 - 财政年份:2022
- 资助金额:
$ 15.51万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
- 批准号:
2212202 - 财政年份:2022
- 资助金额:
$ 15.51万 - 项目类别:
Continuing Grant
Collaborative Research: Optimized Testing Strategies for Fighting Pandemics: Fundamental Limits and Efficient Algorithms
合作研究:抗击流行病的优化测试策略:基本限制和高效算法
- 批准号:
2133170 - 财政年份:2022
- 资助金额:
$ 15.51万 - 项目类别:
Standard Grant
Collaborative Research: Optimized Testing Strategies for Fighting Pandemics: Fundamental Limits and Efficient Algorithms
合作研究:抗击流行病的优化测试策略:基本限制和高效算法
- 批准号:
2133205 - 财政年份:2022
- 资助金额:
$ 15.51万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: QODED: Quantum codes Optimized for the Dynamics between Encoded Computation and Decoding using Classical Coding Techniques
协作研究:CIF:中:QODED:针对使用经典编码技术的编码计算和解码之间的动态进行优化的量子代码
- 批准号:
2106213 - 财政年份:2021
- 资助金额:
$ 15.51万 - 项目类别:
Continuing Grant