Collaborative Research: Optimized Testing Strategies for Fighting Pandemics: Fundamental Limits and Efficient Algorithms

合作研究:抗击流行病的优化测试策略:基本限制和高效算法

基本信息

  • 批准号:
    2133170
  • 负责人:
  • 金额:
    $ 27.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Large-scale high-throughput prevalence and diagnostic testing is essential for the containment and mitigation of pandemics. The testing bottleneck in the COVID-19 pandemic has led to a resurgence of interest in group testing, where several people's biological samples are mixed together and examined in a single test. When the rate of infection in the population is low, this method can significantly reduce the total number of tests per subject and increase the throughput of the existing testing infrastructure. However, traditional group testing has the following limitations: First, efficient group testing based methods for the estimation of prevalence have been largely overlooked in the literature. Second, traditional group testing usually assumes that the testing results are qualitative (positive versus negative), not quantitative (providing viral load information). Third, the theoretical study of group testing rarely takes practical constraints, such as the sensitivity of the pooled tests and the dilution effect, into consideration, which hinders the applicability of the testing schemes in practice. The goal of this project is to overcome these limitations of traditional group testing and design advanced pooled testing strategies for efficient prevalence tracking and accurate infection diagnosis. It will develop optimized pooled testing strategies with strong theoretical performance guarantees yet feasible and cost-effective in practice.The proposed research is organized in three research thrusts as follows. Thrust 1 aims to design effective sampling and testing algorithms to estimate the prevalence in communities and track its evolution, under scarce testing resource constraints. Thrust 2 focuses on the design of optimized pooling and decoding algorithms for compressed sensing based (COVID-19) virus diagnostic testing. Thrust 3 validates the accuracy and efficiency of the proposed pooled testing through experiments on anonymized COVID-19 samples. This project bridges group testing and online learning, the two largely disconnected areas, with the objective to effectively allocate limited testing resources for efficient prevalence tracking. Such integration leads to novel sampling strategies, broadens the paradigm of group testing, and advances the state of the art of online learning. Moreover, the proposed compressed sensing based diagnostic testing leverages quantitative measurements provided by advanced testing technologies, which can significantly increase test throughput, reduce the number of needed tests, decrease the consumption of scarce reagents, and provide results robust against observation noises and outliers. The rich compressed sensing theory provides possible approaches to the rigorous mathematical certification of the correctness of the decoded results. Besides, the clinical constraints on pooled testing also lead to novel problem formulation and theoretical characterization, enriching the study of compressed sensing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模的高通量患病率和诊断测试对于遏制和缓解大流行物至关重要。 Covid-19大流行中的测试瓶颈导致了对小组测试的兴趣,其中几个人的生物样品被混合在一起并在一次测试中进行了检查。当人群中的感染率较低时,此方法可以显着减少每个受试者的测试总数,并增加现有测试基础设施的吞吐量。但是,传统的小组测试具有以下局限性:基于第一个,有效的基于群体测试的估计患病率的方法已在文献中很大程度上忽略了。其次,传统的小组测试通常假定测试结果是定性的(正相比),而不是定量(提供病毒载荷信息)。第三,小组测试的理论研究很少受到实用的约束,例如合并测试的敏感性和稀释效应,这会阻碍测试方案在实践中的适用性。该项目的目的是克服传统小组测试和设计高级合并测试策略的这些局限性,以有效地跟踪和准确的感染诊断。它将制定优化的合并测试策略,具有强大的理论性能保证,但在实践中可行且具有成本效益。拟议的研究是在三个研究推力中组织的,如下所示。推力1旨在设计有效的抽样和测试算法,以估计社区的流行并在稀缺的测试资源限制下跟踪其演变。推力2的重点是针对基于压缩传感的(COVID-19)病毒诊断测试的优化合并和解码算法的设计。推力3通过对匿名COVID-19样本进行实验验证了提出的合并测试的准确性和效率。该项目桥梁小组测试和在线学习,这是两个在很大程度上断开的领域,目的是有效地分配有限的测试资源以进行有效的患病率跟踪。这种整合会导致新颖的采样策略,扩大小组测试的范式,并提高在线学习的最新状态。此外,提出的基于压缩感应的诊断测试利用了先进测试技术提供的定量测量,该测试可以大大增加测试吞吐量,减少所需测试的数量,减少稀缺试剂的消耗,并为观察噪声和异常提供可靠的结果。丰富的压缩感应理论为对解码结果的正确性进行了严格的数学认证提供了可能的方法。此外,汇总测试的临床限制还导致了新的问题制定和理论表征,丰富了压缩感应的研究。该奖项反映了NSF的法定任务,并且认为值得通过基金会的智力优点评估来获得支持,并具有更广泛的影响。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Federated Linear Contextual Bandits with User-level Differential Privacy
  • DOI:
    10.48550/arxiv.2306.05275
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruiquan Huang;Huanyu Zhang;Luca Melis;Milan Shen;Meisam Hajzinia;J. Yang
  • 通讯作者:
    Ruiquan Huang;Huanyu Zhang;Luca Melis;Milan Shen;Meisam Hajzinia;J. Yang
Exploiting Feature Heterogeneity for Improved Generalization in Federated Multi-task Learning
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
  • DOI:
    10.48550/arxiv.2306.08364
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chengshuai Shi;Wei Xiong;Cong Shen;Jing Yang
  • 通讯作者:
    Chengshuai Shi;Wei Xiong;Cong Shen;Jing Yang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Yang其他文献

Experimental and simulation studies on the mechanical performance of concrete T-Girder bridge strengthened with K-Brace composite trusses
K-Brace组合桁架加固混凝土T梁桥力学性能试验与模拟研究
  • DOI:
    10.1016/j.istruc.2022.06.069
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Peng Hou;Jing Yang;Yong Pan;Changjun Ma;W. Du;C. Yang;Yangxi Zhang
  • 通讯作者:
    Yangxi Zhang
Development of a standard set of data variables and a database platform for panvascular disease
开发全血管疾病的标准数据变量集和数据库平台
  • DOI:
    10.1097/cp9.0000000000000066
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jing Yang;Xi Su;Zhihui Dong;P. Yang;Xiaoming Shi;Jiangang Wang;Xueying Zheng;Zhu Tong;Hongjian Zhang;Hao Hu;S. Luo;Wen Sun;Xiaotong Sun;Yingmei Zhang;Junbo Ge
  • 通讯作者:
    Junbo Ge
The potential of XPO1 inhibitors as a game changer in relapsed/refractory hematologic malignancies
XPO1 抑制剂在复发/难治性血液恶性肿瘤中具有改变游戏规则的潜力
Research of Influence of Forced Cooling on Secondary Motion and Force of Piston
The Influence of the Team Climate on Team Innovation performance: An Empirical Study Based on Chinese High Technology Innovation Teams
团队氛围对团队创新绩效的影响——基于中国高技术创新团队的实证研究

Jing Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Yang', 18)}}的其他基金

Collaborative Research: CNS Core: Small: Timely Computing and Learning over Communication Networks
合作研究:CNS 核心:小型:通过通信网络进行及时计算和学习
  • 批准号:
    2114542
  • 财政年份:
    2021
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
  • 批准号:
    2003131
  • 财政年份:
    2020
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: SMALL: Learning-Efficient Spectrum Access for No-Sensing Devices in Shared Spectrum
合作研究:SWIFT:SMALL:共享频谱中无感知设备的学习高效频谱访问
  • 批准号:
    2030026
  • 财政年份:
    2020
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
CNS Core: Medium: When Next Generation Wireless Networks Meet Machine Learning
CNS 核心:中:当下一代无线网络遇到机器学习时
  • 批准号:
    1956276
  • 财政年份:
    2020
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
Development of a 3D human in vitro model of pancreatic beta cell health
开发胰腺 β 细胞健康的 3D 人体体外模型
  • 批准号:
    EP/N510099/1
  • 财政年份:
    2017
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Research Grant
CAREER: When Energy Harvesting Meets "Big Data": Designing Smart Energy Harvesting Wireless Sensor Networks
职业:当能量收集遇到“大数据”:设计智能能量收集无线传感器网络
  • 批准号:
    1650299
  • 财政年份:
    2016
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
SI2-SSE: Collaborative Research: TrajAnalytics: A Cloud-Based Visual Analytics Software System to Advance Transportation Studies Using Emerging Urban Trajectory Data
SI2-SSE:合作研究:TrajAnalytics:基于云的视觉分析软件系统,利用新兴城市轨迹数据推进交通研究
  • 批准号:
    1535081
  • 财政年份:
    2015
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
CAREER: When Energy Harvesting Meets "Big Data": Designing Smart Energy Harvesting Wireless Sensor Networks
职业:当能量收集遇到“大数据”:设计智能能量收集无线传感器网络
  • 批准号:
    1454471
  • 财政年份:
    2015
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Visualizing Event Dynamics with Narrative Animation
EAGER:协作研究:用叙事动画可视化事件动态
  • 批准号:
    1352893
  • 财政年份:
    2013
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
EAGER: Link Free Graph Visualization for Exploring Large Complex Graphs
EAGER:用于探索大型复杂图的链接自由图可视化
  • 批准号:
    0946400
  • 财政年份:
    2009
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant

相似国自然基金

车联网中基于多智能体系统的协同优化机制研究
  • 批准号:
    62302062
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于多算法组合协作的城市空中交通建模分析与优化管控研究
  • 批准号:
    72301278
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向边缘智能的无线网络协作计算与资源优化研究
  • 批准号:
    62301307
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不确定环境下多式联运系统优化与协作机制研究
  • 批准号:
    72371169
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
多冗余度机器人的跨层协作神经动力学优化策略研究
  • 批准号:
    62373157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
  • 批准号:
    2307979
  • 财政年份:
    2023
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234032
  • 财政年份:
    2023
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234031
  • 财政年份:
    2023
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
  • 批准号:
    2307978
  • 财政年份:
    2023
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
  • 批准号:
    2212200
  • 财政年份:
    2022
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了