Collaborative Research: Optimized Testing Strategies for Fighting Pandemics: Fundamental Limits and Efficient Algorithms
合作研究:抗击流行病的优化测试策略:基本限制和高效算法
基本信息
- 批准号:2133170
- 负责人:
- 金额:$ 27.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Large-scale high-throughput prevalence and diagnostic testing is essential for the containment and mitigation of pandemics. The testing bottleneck in the COVID-19 pandemic has led to a resurgence of interest in group testing, where several people's biological samples are mixed together and examined in a single test. When the rate of infection in the population is low, this method can significantly reduce the total number of tests per subject and increase the throughput of the existing testing infrastructure. However, traditional group testing has the following limitations: First, efficient group testing based methods for the estimation of prevalence have been largely overlooked in the literature. Second, traditional group testing usually assumes that the testing results are qualitative (positive versus negative), not quantitative (providing viral load information). Third, the theoretical study of group testing rarely takes practical constraints, such as the sensitivity of the pooled tests and the dilution effect, into consideration, which hinders the applicability of the testing schemes in practice. The goal of this project is to overcome these limitations of traditional group testing and design advanced pooled testing strategies for efficient prevalence tracking and accurate infection diagnosis. It will develop optimized pooled testing strategies with strong theoretical performance guarantees yet feasible and cost-effective in practice.The proposed research is organized in three research thrusts as follows. Thrust 1 aims to design effective sampling and testing algorithms to estimate the prevalence in communities and track its evolution, under scarce testing resource constraints. Thrust 2 focuses on the design of optimized pooling and decoding algorithms for compressed sensing based (COVID-19) virus diagnostic testing. Thrust 3 validates the accuracy and efficiency of the proposed pooled testing through experiments on anonymized COVID-19 samples. This project bridges group testing and online learning, the two largely disconnected areas, with the objective to effectively allocate limited testing resources for efficient prevalence tracking. Such integration leads to novel sampling strategies, broadens the paradigm of group testing, and advances the state of the art of online learning. Moreover, the proposed compressed sensing based diagnostic testing leverages quantitative measurements provided by advanced testing technologies, which can significantly increase test throughput, reduce the number of needed tests, decrease the consumption of scarce reagents, and provide results robust against observation noises and outliers. The rich compressed sensing theory provides possible approaches to the rigorous mathematical certification of the correctness of the decoded results. Besides, the clinical constraints on pooled testing also lead to novel problem formulation and theoretical characterization, enriching the study of compressed sensing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模的高通量流行和诊断性检测对于遏制和缓解流行病至关重要。新冠肺炎疫情中的检测瓶颈重新引发了人们对集体检测的兴趣,即几个人的生物样本混合在一起,在一次检测中进行检查。当人群感染率较低时,这种方法可以显著减少每个受试者的总检测次数,并增加现有检测基础设施的吞吐量。然而,传统的群体测试有以下局限性:首先,基于群体测试的有效的流行率估计方法在很大程度上被文献所忽视。其次,传统的群体检测通常假设检测结果是定性的(阳性与阴性),而不是定量的(提供病毒载量信息)。第三,分组测试的理论研究很少考虑实际约束,如混合测试的敏感性和稀释效应,这阻碍了测试方案在实践中的适用性。该项目的目标是克服传统群体检测的这些局限性,并设计先进的联合检测策略,以实现有效的流行跟踪和准确的感染诊断。它将开发优化的混合测试策略,在理论上有很强的性能保证,但在实践中是可行的和具有成本效益的。推力1旨在设计有效的抽样和测试算法,在有限的测试资源限制下,估计社区中的流行率并跟踪其演变。推力2专注于为基于压缩感知(新冠肺炎)的病毒诊断测试设计优化的池化和解码算法。推力3通过对匿名新冠肺炎样本的实验验证了所提出的混合测试的准确性和效率。该项目将团体测试和在线学习这两个基本上互不相连的领域联系起来,目的是有效地分配有限的测试资源,以便有效地跟踪流行率。这种整合导致了新的抽样策略,拓宽了团体测试的范式,并促进了在线学习的艺术水平。此外,提出的基于压缩传感的诊断测试利用了先进测试技术提供的定量测量,可以显著增加测试吞吐量,减少所需测试的数量,减少稀缺试剂的消耗,并提供对观测噪声和异常值具有鲁棒性的结果。丰富的压缩感知理论为对解码结果的正确性进行严格的数学证明提供了可能。此外,联合测试的临床限制也导致了新的问题表达和理论表征,丰富了压缩感觉的研究。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Federated Linear Contextual Bandits with User-level Differential Privacy
- DOI:10.48550/arxiv.2306.05275
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Ruiquan Huang;Huanyu Zhang;Luca Melis;Milan Shen;Meisam Hajzinia;J. Yang
- 通讯作者:Ruiquan Huang;Huanyu Zhang;Luca Melis;Milan Shen;Meisam Hajzinia;J. Yang
Exploiting Feature Heterogeneity for Improved Generalization in Federated Multi-task Learning
- DOI:10.1109/isit54713.2023.10206757
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Renpu Liu;Jing Yang;Cong Shen
- 通讯作者:Renpu Liu;Jing Yang;Cong Shen
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
- DOI:10.48550/arxiv.2306.08364
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Chengshuai Shi;Wei Xiong;Cong Shen;Jing Yang
- 通讯作者:Chengshuai Shi;Wei Xiong;Cong Shen;Jing Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Yang其他文献
Upregulation of flotillin-1 promotes invasion and metastasis by activating TGF-β signaling in nasopharyngeal carcinoma
ïotillin-1 的上调通过激活 TGF-β 信号传导促进鼻咽癌的侵袭和转移
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sumei Cao;Yanmei Cui;Huiming Xiao;Miaoqing Mai;Chanjuan Wang;Shanghang Xie;Jing Yang;Shu Wu;Jun Li;Libing Song;Xiang Guo;Chuyong Lin - 通讯作者:
Chuyong Lin
Separation of gallium and aluminum from HCl solution by microemusion
微乳液法从HCl溶液中分离镓和铝
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2.8
- 作者:
Jing Yang;Xidan Zhao;Yanzhao Yang - 通讯作者:
Yanzhao Yang
Hydrogen Bonding Character Between the Glycine and BF4
甘氨酸与BF4之间的氢键特征
- DOI:
10.1088/1674-0068/22/05/517-522 - 发表时间:
2009 - 期刊:
- 影响因子:1
- 作者:
Qin He;Jing Yang;Xiangying Meng - 通讯作者:
Xiangying Meng
Prediction of the crystal size distribution for reactive crystallization of barium carbonate under growth and nucleation mechanisms
生长和成核机制下碳酸钡反应结晶的晶体尺寸分布的预测
- DOI:
10.1021/acs.cgd.8b01067 - 发表时间:
2019 - 期刊:
- 影响因子:3.8
- 作者:
Wei Zhang;Fengzhen Zhang;Liping Ma;Jie Yang;Jing Yang;Huaping Xiang - 通讯作者:
Huaping Xiang
A Chinese Han pedigree with Huntington disease mimicking spinocerebellar ataxia
一个患有类似脊髓小脑共济失调的亨廷顿病的中国汉族家系
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:4.4
- 作者:
Chengyuan Mao;Yun Su;Huiyun Wang;Liyuan Fan;Huimin Zheng;Tai Wang;Xinwei Li;Shuo Zhang;Zhengwei Hu;Haiyang Luo;Jing Yang;Changhe Shi;Yuming Xu - 通讯作者:
Yuming Xu
Jing Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Yang', 18)}}的其他基金
Collaborative Research: CNS Core: Small: Timely Computing and Learning over Communication Networks
合作研究:CNS 核心:小型:通过通信网络进行及时计算和学习
- 批准号:
2114542 - 财政年份:2021
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2003131 - 财政年份:2020
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Learning-Efficient Spectrum Access for No-Sensing Devices in Shared Spectrum
合作研究:SWIFT:SMALL:共享频谱中无感知设备的学习高效频谱访问
- 批准号:
2030026 - 财政年份:2020
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
CNS Core: Medium: When Next Generation Wireless Networks Meet Machine Learning
CNS 核心:中:当下一代无线网络遇到机器学习时
- 批准号:
1956276 - 财政年份:2020
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Development of a 3D human in vitro model of pancreatic beta cell health
开发胰腺 β 细胞健康的 3D 人体体外模型
- 批准号:
EP/N510099/1 - 财政年份:2017
- 资助金额:
$ 27.48万 - 项目类别:
Research Grant
CAREER: When Energy Harvesting Meets "Big Data": Designing Smart Energy Harvesting Wireless Sensor Networks
职业:当能量收集遇到“大数据”:设计智能能量收集无线传感器网络
- 批准号:
1650299 - 财政年份:2016
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: TrajAnalytics: A Cloud-Based Visual Analytics Software System to Advance Transportation Studies Using Emerging Urban Trajectory Data
SI2-SSE:合作研究:TrajAnalytics:基于云的视觉分析软件系统,利用新兴城市轨迹数据推进交通研究
- 批准号:
1535081 - 财政年份:2015
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
CAREER: When Energy Harvesting Meets "Big Data": Designing Smart Energy Harvesting Wireless Sensor Networks
职业:当能量收集遇到“大数据”:设计智能能量收集无线传感器网络
- 批准号:
1454471 - 财政年份:2015
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Visualizing Event Dynamics with Narrative Animation
EAGER:协作研究:用叙事动画可视化事件动态
- 批准号:
1352893 - 财政年份:2013
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
EAGER: Link Free Graph Visualization for Exploring Large Complex Graphs
EAGER:用于探索大型复杂图的链接自由图可视化
- 批准号:
0946400 - 财政年份:2009
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
- 批准号:
2307979 - 财政年份:2023
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
- 批准号:
2307978 - 财政年份:2023
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
- 批准号:
2212200 - 财政年份:2022
- 资助金额:
$ 27.48万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
- 批准号:
2212201 - 财政年份:2022
- 资助金额:
$ 27.48万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
- 批准号:
2212202 - 财政年份:2022
- 资助金额:
$ 27.48万 - 项目类别:
Continuing Grant
Collaborative Research: Optimized Testing Strategies for Fighting Pandemics: Fundamental Limits and Efficient Algorithms
合作研究:抗击流行病的优化测试策略:基本限制和高效算法
- 批准号:
2133205 - 财政年份:2022
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: QODED: Quantum codes Optimized for the Dynamics between Encoded Computation and Decoding using Classical Coding Techniques
协作研究:CIF:中:QODED:针对使用经典编码技术的编码计算和解码之间的动态进行优化的量子代码
- 批准号:
2106213 - 财政年份:2021
- 资助金额:
$ 27.48万 - 项目类别:
Continuing Grant
RUI: Collaborative Research: Optimized design principles inspired by compliant natural propulsors
RUI:协作研究:受顺应自然推进器启发的优化设计原则
- 批准号:
2100209 - 财政年份:2021
- 资助金额:
$ 27.48万 - 项目类别:
Standard Grant