Geometric Group Theory and Surface Dynamics
几何群论和表面动力学
基本信息
- 批准号:1308710
- 负责人:
- 金额:$ 18.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are three sections to the proposal, each the continuation of a long standing collaboration. Lee Mosher and the PI have short, medium and long term goals regarding the outer automorphism group Out(F) of the finite rank free group F. These include proving that subgroups of Out(F) are either virtually abelian or have infinite dimensional second bounded cohomology and developing an analog for Out(F) of the Masur-Minsky summation formula that applies to mapping class groups. Mark Feighn and the PI have been focusing on the conjugacy problem for Out(F) in the case that the elements in question have polynomial growth. The intent is to complete this important special case and then to the solve the full conjugacy problem by merging the techniques from the polynomially growing case with those already developed to solve the exponentially growing case. John Franks and the PI use relative mapping class group methods to study the dynamics of diffeomorphisms of surfaces. One goal is to to extend their work on zero entropy area preserving diffeomorphisms of the sphere to surfaces of higher genus. This project concerns the properties of, and the relationships between, three important groups: the outer automorphism group of a free group, the mapping class group of a surface, and the diffeomorphism group of a surface. Topological and geometric methods are used to study dynamical systems and in return, ideas from dynamics are used to formulate and prove fundamental topological and geometric properties of outer automorphisms and mapping classes. There is currently a great deal of interest in the large scale geometry of the group of outer automorphisms of the free group and this proposal is well situated to make substantial progress on this front.
该提案分为三个部分,每个部分都是长期合作的延续。 Lee Mosher和PI对有限秩自由群F的外自同构群Out(F)有短期、中期和长期的目标。 这些包括证明子群的出(F)要么几乎阿贝尔或有无限维第二界上同调和开发一个类似的出(F)的Masur-明斯基求和公式,适用于映射类组。 Mark Feighn和PI一直专注于Out(F)的共轭问题,在所讨论的元素具有多项式增长的情况下。 其目的是完成这一重要的特殊情况下,然后解决充分共轭问题合并的技术,从多项式增长的情况下,与那些已经开发的解决指数增长的情况。 约翰·弗兰克斯和PI使用相对映射类群方法来研究曲面的自同构的动力学。 一个目标是扩大他们的工作零熵面积保持的球面的超纯曲面的高属。 这个项目涉及的性质,以及之间的关系,三个重要的群体:外自同构群的自由群,映射类组的表面,和sellomorphism组的表面。 拓扑和几何方法用于研究动力系统,反过来,动力学的思想用于制定和证明外自同构和映射类的基本拓扑和几何性质。 目前有很大的兴趣在大规模的几何组的外部自同构的自由组和这一建议是很好地处于取得实质性进展在这方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Handel其他文献
Orientation reversing Morse-Smale diffeomorphisms ofS 2
- DOI:
10.1007/bf01389172 - 发表时间:
1981-06-01 - 期刊:
- 影响因子:3.600
- 作者:
Steve Batterson;Michael Handel;Carolyn Narasimhan - 通讯作者:
Carolyn Narasimhan
Michael Handel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Handel', 18)}}的其他基金
Geometric group theory and surface dynamics
几何群论和表面动力学
- 批准号:
1007159 - 财政年份:2010
- 资助金额:
$ 18.54万 - 项目类别:
Standard Grant
Geometric Group Theory and Surface Dynamics
几何群论和表面动力学
- 批准号:
0706719 - 财政年份:2007
- 资助金额:
$ 18.54万 - 项目类别:
Standard Grant
ITR/SOC: Survey on Information Technology, Job Skill Requirements, and Work Organization
ITR/SOC:信息技术、工作技能要求和工作组织调查
- 批准号:
0632607 - 财政年份:2005
- 资助金额:
$ 18.54万 - 项目类别:
Continuing Grant
Geometric Group Theory and Surface Dynamics
几何群论和表面动力学
- 批准号:
0405814 - 财政年份:2004
- 资助金额:
$ 18.54万 - 项目类别:
Continuing Grant
ITR/SOC: Survey on Information Technology, Job Skill Requirements, and Work Organization
ITR/SOC:信息技术、工作技能要求和工作组织调查
- 批准号:
0326343 - 财政年份:2003
- 资助金额:
$ 18.54万 - 项目类别:
Continuing Grant
Geometric Group Theory and Surface Dynamics
几何群论和表面动力学
- 批准号:
0103435 - 财政年份:2001
- 资助金额:
$ 18.54万 - 项目类别:
Standard Grant
Geometric Group Theory and Surface Dynamics
几何群论和表面动力学
- 批准号:
9803638 - 财政年份:1998
- 资助金额:
$ 18.54万 - 项目类别:
Standard Grant
Mathematical Sciences: Outer Automorphisms and Surface Dynamics
数学科学:外自同构和表面动力学
- 批准号:
9504912 - 财政年份:1995
- 资助金额:
$ 18.54万 - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorial Topology and Surface Dynamics
数学科学:组合拓扑和表面动力学
- 批准号:
9204292 - 财政年份:1992
- 资助金额:
$ 18.54万 - 项目类别:
Continuing Grant
Mathematical Sciences: Automorphisms of the Free Group and Their Application to the Dynamics of Surface Diffeomorphisms
数学科学:自由群的自同构及其在表面微分同胚动力学中的应用
- 批准号:
8904934 - 财政年份:1989
- 资助金额:
$ 18.54万 - 项目类别:
Continuing Grant
相似国自然基金
分泌蛋白IGFBP2在儿童Group3/Group4型髓母细胞瘤恶性进展中的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大兴安岭火山湖Group I长链烯酮冷季节温标研究与过去2000年温度定量重建
- 批准号:42073070
- 批准年份:2020
- 资助金额:61 万元
- 项目类别:面上项目
近海沉积物中Marine Group I古菌新类群的发现、培养及其驱动碳氮循环的机制
- 批准号:92051115
- 批准年份:2020
- 资助金额:81.0 万元
- 项目类别:重大研究计划
MicroRNA靶向的漆酶基因及其所在Group 1 亚家族成员 调控水稻产量性状的功能机制
- 批准号:
- 批准年份:2019
- 资助金额:257 万元
- 项目类别:
超级增强子驱动的核心转录调控环路在Group_3亚型髓母细胞瘤的发病和治疗中的作用和机制
- 批准号:81972646
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
东北地区火山湖GroupⅠ类型的长链烯酮研究及其不饱和度温标的应用
- 批准号:41702187
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
中国源毕氏肠微孢子虫group 2基因型人兽共患特征的研究
- 批准号:31502055
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
人源Group IIE分泌型磷脂酶A2蛋白的结构生物学研究
- 批准号:31300670
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
连锁群选育法(Linkage Group Selection)在柔嫩艾美耳球虫表型相关基因研究中应用
- 批准号:30700601
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
原核生物基因内含子-group II intron 的研究
- 批准号:30770463
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
- 批准号:
2403833 - 财政年份:2024
- 资助金额:
$ 18.54万 - 项目类别:
Standard Grant
Conference: Young Geometric Group Theory XII
会议:年轻几何群理论XII
- 批准号:
2404322 - 财政年份:2024
- 资助金额:
$ 18.54万 - 项目类别:
Standard Grant
Conference: Riverside Workshop on Geometric Group Theory 2024
会议:2024 年河滨几何群论研讨会
- 批准号:
2342119 - 财政年份:2024
- 资助金额:
$ 18.54万 - 项目类别:
Standard Grant
Conference: Thematic Program in Geometric Group Theory
会议:几何群论专题课程
- 批准号:
2240567 - 财政年份:2023
- 资助金额:
$ 18.54万 - 项目类别:
Standard Grant
Conference: Riverside Geometric Group Theory Workshop 2023
会议:Riverside几何群理论研讨会2023
- 批准号:
2234299 - 财政年份:2023
- 资助金额:
$ 18.54万 - 项目类别:
Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2023
会议:几何和渐近群理论及其应用 2023
- 批准号:
2311110 - 财政年份:2023
- 资助金额:
$ 18.54万 - 项目类别:
Standard Grant
Conference: Geometric Group Theory XI
会议:几何群论XI
- 批准号:
2242426 - 财政年份:2023
- 资助金额:
$ 18.54万 - 项目类别:
Standard Grant
Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
- 批准号:
2154637 - 财政年份:2022
- 资助金额:
$ 18.54万 - 项目类别:
Standard Grant
New Directions in Geometric Group Theory and Topology
几何群论和拓扑学的新方向
- 批准号:
2203355 - 财政年份:2022
- 资助金额:
$ 18.54万 - 项目类别:
Continuing Grant