Geometric cocycles, differential K-theory, and non-abelian gerbes
几何余循环、微分 K 理论和非阿贝尔非洲菊
基本信息
- 批准号:1309099
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is based on a geometric study of cohomology theories. Cohomology theories provide useful invariants for topological spaces, and their classification by the spectra provides a unified picture, indicating how numerous they are. Nevertheless, our understanding of cohomology theories, along with their equivariant, differential, and other mixed variants, remains limited. This is partly due to the fact that aside from a few examples, such as ordinary cohomology and K-theory, there are no good geometric descriptions of the cohomology classes of a given theory with immediate ties to naturally occurring objects in geometry. Even in the case of K-theory and its variants, our current understanding leaves many questions unanswered. Geometrically representing classes of a theory has proven to be useful in many regards, including the construction of non-homotopy invariant refinements, like differential theories, their equivariant versions, and pushforwards (cocycle level index theorems). In this proposal, the PI studies several ways of obtaining geometric models for K-theories (equivariant, differential, and their mixes) as well as refinements that take into account the Wilson line effects by using the Bismut Chern character. In one component of the research, the PI studies differential K-theory using representatives of the Atiyah class in the Toledo-Tong twisted resolution. In another, the PI aims to use his work with his collaborators, on the equivariant holonomy for abelian gerbes, to study topological invariants of non-abelian grebes. The main tool for this part is the equivariant topological chiral homology. This research has graduate student components.Cohomology theories, their variants, and refinements are part of a branch of mathematics called topology. Cohomological invariants can measure a wide variety of phenomena, from wrappings of a piece of rope around a pole, to the possibilities for the shape of the universe. Cohomological techniques and descriptions have taken a central role in modeling high energy physics phenomena to the extent that several fundamental concepts were originally discovered by physicist and mathematicians independently. Comparison and cross-fertilization between the two fields has resulted in an accelerated enrichment of both, a trend that continues to pick up momentum increasingly. A modern categorical point of view now serves as a common language for mathematicians and physicists to explore cohomological ideas and their byproducts. Several components of the grant engage undergraduate and graduate students.
这个建议是基于几何研究的上同调理论。上同调理论为拓扑空间提供了有用的不变量,它们的谱分类提供了一个统一的图像,表明它们有多少。尽管如此,我们对上同调理论的理解,沿着,以及它们的等变、微分和其他混合变体,仍然有限。这部分是因为除了一些例子,如普通的上同调和K理论,没有很好的几何描述的上同调类的一个给定的理论直接联系到自然发生的对象在几何。即使是在K理论及其变体的情况下,我们目前的理解也留下了许多未解之谜。理论的几何表示类在许多方面都被证明是有用的,包括非同伦不变精化的构造,如微分理论,它们的等变版本和推进(上循环水平指标定理)。在这个提议中,PI研究了几种获得K理论几何模型的方法(等变、微分和它们的混合),以及通过使用Bismut Chern特征考虑威尔逊线效应的改进。在研究的一个组成部分中,PI使用Toledo-Tong扭曲分辨率中的Atiyah类的代表研究微分K理论。在另一个,PI的目的是使用他的工作与他的合作者,对等变holonomy的阿贝尔gerbes,研究拓扑不变量的非阿贝尔grebes。这一部分的主要工具是等变拓扑手征同调。这项研究有研究生组成部分。上同调理论,它们的变体和改进是数学分支拓扑学的一部分。上同调不变量可以测量各种各样的现象,从一根绳子绕在一根柱子上的缠绕,到宇宙形状的可能性。上同调的技术和描述在模拟高能物理现象中发挥了核心作用,以至于一些基本概念最初是由物理学家和数学家独立发现的。这两个领域之间的比较和相互促进导致了两者的加速丰富,这一趋势继续日益加快。一个现代的范畴观点现在成为数学家和物理学家探索上同调思想及其副产品的共同语言。赠款的几个组成部分吸引了本科生和研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mahmoud Zeinalian其他文献
Center of mass and Kähler structures
- DOI:
10.1007/s00022-019-0489-8 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:0.500
- 作者:
Scott O. Wilson;Mahmoud Zeinalian - 通讯作者:
Mahmoud Zeinalian
Large emN/em phenomena and quantization of the Loday-Quillen-Tsygan theorem
- DOI:
10.1016/j.aim.2022.108631 - 发表时间:
2022-11-19 - 期刊:
- 影响因子:1.500
- 作者:
Grégory Ginot;Owen Gwilliam;Alastair Hamilton;Mahmoud Zeinalian - 通讯作者:
Mahmoud Zeinalian
Mahmoud Zeinalian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
KAM理论在刘维尔频率的拟周期系统中的应用
- 批准号:11601230
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多频拟周期格点薛定谔算子的动力学特征
- 批准号:11571327
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
Cocycles的动力学及其在线性算子谱理论中的应用
- 批准号:10871090
- 批准年份:2008
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Modular Cocycles, Explicit Class Field Theory, and Quantum Designs
模块化共循环、显式类场论和量子设计
- 批准号:
2302514 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
LEAPS-MPS: Elliptic Dedekind Sums, Eisenstein Cocycles, and p-adic L-Functions
LEAPS-MPS:椭圆戴德金和、爱森斯坦余循环和 p 进 L 函数
- 批准号:
2212924 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Topological Study on Riemann Surfaces through Higher Cocycles
通过高次循环对黎曼曲面进行拓扑研究
- 批准号:
19H01784 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Non-Commutative Cocycles and Dynamics of Systems with Hyperbolic Behavior
非交换余循环和具有双曲行为的系统动力学
- 批准号:
1764216 - 财政年份:2018
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Stability of Cocycles of Perron-Frobenius Operators
Perron-Frobenius算子余循环的稳定性
- 批准号:
475092-2015 - 财政年份:2017
- 资助金额:
$ 16万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Stability of Cocycles of Perron-Frobenius Operators
Perron-Frobenius算子余循环的稳定性
- 批准号:
475092-2015 - 财政年份:2016
- 资助金额:
$ 16万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Stability of Cocycles of Perron-Frobenius Operators
Perron-Frobenius算子余循环的稳定性
- 批准号:
475092-2015 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Cocycles over hyperbolic and partially hyperbolic systems
双曲和部分双曲系统上的余循环
- 批准号:
1301693 - 财政年份:2013
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Constructions of cocycles of finite groups by characteristic classes
通过特征类构造有限群的余循环
- 批准号:
23654018 - 财政年份:2011
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
RUI: Cocycles and rigidity for hyperbolic systems and actions
RUI:双曲系统和作用的余循环和刚度
- 批准号:
1101150 - 财政年份:2011
- 资助金额:
$ 16万 - 项目类别:
Standard Grant