Understanding the Deformation Mechanisms in Austenitic Iron-Manganese Steels with Changes in Stacking Fault Energy, Strain Rate and Tempeature

了解奥氏体铁锰钢随堆垛层错能、应变率和温度变化的变形机制

基本信息

  • 批准号:
    1309258
  • 负责人:
  • 金额:
    $ 35.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYTo understand the complex deformation mechanisms exhibited by austenitic iron-manganese steels, which include transformation-induced plasticity (TRIP), twinning-induced plasticity (TWIP), and dislocation glide, requires systematic mechanical testing with materials characterization down to the atomic scale. Changes in stacking-fault energy (SFE) with composition and temperature strongly influence the active deformation mechanism. Although the determination of SFE is challenging and most investigations rely on calculated values, careful experimental methods using weak-beam dark field (WBDF) imaging of partial dislocation separation can provide accurate SFE measurements. In addition to the composition and deformation temperature, important microstructural and processing parameters include grain size and strain rate. Correlation of the SFE with the mechanical behavior is a critical aspect for developing a basic understanding of the structure-property-processing relationships that will allow for future advances in the design of new high-manganese austenitic steels.NON-TECHNICAL SUMMARYIn the last five years, there has been a significant increase in the research activity associated with high-manganese austenitic steels as evidenced by both the number of scientific publications and patent applications. These steels are excellent candidates for applications requiring high formability and energy absorption such as cold-stamping of automotive parts owing to their exceptional ductility, strain-hardening, and toughness. This proposal describes collaboration between Vanderbilt University, the Ohio State University, the RWTH University and the Max-Planck-Institut für Eisenforschung in Germany, and the Oak Ridge National Laboratory to address the basic science involved with the future development of high-manganese austenitic steels. This international collaboration not only allows the combined expertise of the individual investigators to be focused on understanding the complex deformation mechanisms in these alloys, but it will also promote the education of graduate students who will benefit from the international experience. Student education and training will be enhanced through international collaborations. Educational opportunities enabled by these activities will be made available to under-represented groups through the Vanderbilt-Fisk Bridge program.
技术摘要为了了解奥氏体铁锰钢表现出的复杂变形机制,包括相变诱发塑性 (TRIP)、孪晶诱发塑性 (TWIP) 和位错滑移,需要进行系统的机械测试,并在原子尺度上进行材料表征。 堆垛层错能(SFE)随成分和温度的变化强烈影响主动变形机制。 尽管 SFE 的确定具有挑战性,并且大多数研究依赖于计算值,但使用部分位错分离的弱光束暗场 (WBDF) 成像的仔细实验方法可以提供准确的 SFE 测量。 除了成分和变形温度外,重要的微观结构和加工参数还包括晶粒尺寸和应变速率。 SFE 与机械行为的相关性是发展对结构-性能-加工关系的基本了解的一个关键方面,这将有助于新型高锰奥氏体钢设计的未来进步。非技术摘要在过去五年中,与高锰奥氏体钢相关的研究活动显着增加,科学出版物和专利申请的数量证明了这一点。 这些钢具有出色的延展性、应变硬化和韧性,是需要高成形性和能量吸收的应用(例如汽车零件的冷冲压)的绝佳选择。 该提案描述了范德比尔特大学、俄亥俄州立大学、RWTH 大学和德国马克斯普朗克研究所以及橡树岭国家实验室之间的合作,以解决高锰奥氏体钢未来发展所涉及的基础科学问题。这项国际合作不仅使各个研究人员的综合专业知识能够集中于了解这些合金的复杂变形机制,而且还将促进从国际经验中受益的研究生的教育。将通过国际合作加强学生教育和培训。这些活动带来的教育机会将通过范德比尔特-菲斯克桥计划向代表性不足的群体提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Wittig其他文献

James Wittig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Wittig', 18)}}的其他基金

The Influence of Stacking Fault Energy on the Phase Transformations and Deformation Mechanisms in Iron-Manganese Alloys
堆垛层错能对铁锰合金相变和变形机制的影响
  • 批准号:
    0805295
  • 财政年份:
    2009
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Continuing Grant
Nonequilibrium Phase Transformations in Titanium Aluminides with Ternary Additions
三元添加物铝化钛的非平衡相变
  • 批准号:
    9616748
  • 财政年份:
    1997
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Continuing Grant
Acquisition of High Resolution Scanning Electron Microscope
购置高分辨率扫描电子显微镜
  • 批准号:
    9626366
  • 财政年份:
    1996
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Standard Grant
Undercool-Rapid Quench Processing of Titanium Rare-Earth Alloys
钛稀土合金的过冷快速淬火加工
  • 批准号:
    9202308
  • 财政年份:
    1992
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Continuing Grant
Acquisition of an Analytical Electron Microscope
购买分析电子显微镜
  • 批准号:
    8814854
  • 财政年份:
    1988
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding Grain Boundary Multiplicity and Its Role in Deformation Mechanisms of Nanocrystalline Metals
了解晶界多重性及其在纳米晶金属变形机制中的作用
  • 批准号:
    2105328
  • 财政年份:
    2021
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Standard Grant
Understanding mechanisms of coat assembly and membrane deformation.
了解涂层组装和膜变形的机制。
  • 批准号:
    BB/T002670/1
  • 财政年份:
    2020
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Research Grant
Designing and Processing Microstructurally Tailored Graphene Aerogels with An Understanding of Deformation and Failure Mechanisms
了解变形和失效机制,设计和加工微观结构定制的石墨烯气凝胶
  • 批准号:
    1923033
  • 财政年份:
    2019
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Standard Grant
CAREER: Understanding of Diffusion and Deformation Mechanisms in Multi-Principal Element Alloy Interlayers for Manufacturing of Multi-Material Structures
职业:了解用于制造多材料结构的多主元合金夹层的扩散和变形机制
  • 批准号:
    1847630
  • 财政年份:
    2019
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Standard Grant
Observation of mesoscale structure in bulk nanocrystalline Fe-Ni with high ductility for understanding the deformation mechanisms
观察具有高延展性的块体纳米晶 Fe-Ni 的介观结构以了解变形机制
  • 批准号:
    26886014
  • 财政年份:
    2014
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Integrated approach to understanding the deformation and load bearing mechanisms of CFRP material and structure
了解 CFRP 材料和结构的变形和承载机制的综合方法
  • 批准号:
    24560575
  • 财政年份:
    2012
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modeling of deformation and tectonic loading processes in the island arc crust : toward understanding the mechanisms of large inland earthquakes
岛弧地壳变形和构造加载过程的模拟:了解大型内陆地震的机制
  • 批准号:
    21540443
  • 财政年份:
    2009
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding complex failure/deformation mechanisms in engineering rock mechanics through the integration of geotechnical field measurements and advanced mumerical modelling
通过岩土现场测量和高级数值建模的集成,了解工程岩石力学中的复杂破坏/变形机制
  • 批准号:
    283132-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental Understanding of Deformation Mechanisms in Nanocrystalline Superplasticity
纳米晶超塑性变形机制的基本理解
  • 批准号:
    0703994
  • 财政年份:
    2007
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Continuing Grant
Understanding complex failure/deformation mechanisms in engineering rock mechanics through the integration of geotechnical field measurements and advanced mumerical modelling
通过岩土现场测量和高级数值建模的集成,了解工程岩石力学中的复杂破坏/变形机制
  • 批准号:
    283132-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了