CDMR: Design and Processing of High-Energy-Density Cathodes for Li-ion Batteries

CDMR:锂离子电池高能量密度正极的设计与加工

基本信息

  • 批准号:
    1310289
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Technical AbstractRecently, a new class of high-energy-density, Li- and Mn-rich layered cathode materials has been discovered. The project aims to build the fundamental knowledge base needed to progress towards design and processing of the materials with desired properties through integrated first-principles calculations, CALPHAD modeling, materials processing, and battery assembling and testing. This fundamental knowledge base also builds the genome foundation to discover new cathode materials. The new cathode material resides in a multi-component space of xLi2MnO3ª(1-x)LiMO2 with M being alloying elements including Mn, Co, and Ni. In the project, first-principles calculations will be used to systematically investigate the effects of these common alloying elements and potential outliers on electronic structures and charge transfers and predict thermodynamic properties of individual phases as a function of temperature and compositions. CALPHAD modeling will be utilized to establish phase relations and optimize the composition space (x and M) for superior charging-discharging performance. To validate the predictions from first-principles calculations and CALPHAD modeling, cathode materials will be synthesized with tailored composition and assemble coin cells to test battery performance. The project objectives are: 1.Establish fundamental understanding of effects of alloying elements and search for potential outliers;2.Develop a thermodynamic description of the Li-Mn-Co-Ni-O system plus potential outliers;3.Synthesize and characterize cathode materials and test battery performance based on computational modeling and feedback to improve databases.Nontechnical SummaryThe development of new materials and the capability of tailoring existing materials to meet new and demanding applications are critical for continued improvements in the quality of human life. Materials are a determining factor in the global competitiveness of the U.S. manufacturing industry as materials account for up to half of the costs of most manufactured products. Li-ion rechargeable batteries are the key constituent for low cost and high-energy-density storages needed for numerous applications such as electronic devices and electric vehicles. The development of novel cathodes is critical because of the limitations of cost and energy density for cathodes used in current rechargeable Li-ion batteries. Recently, a new class of high-energy-density, Li- and Mn-rich layered cathode materials has been discovered. The project aims to build the fundamental knowledge base needed to progress towards design and processing of the materials with desired properties through integrated first-principles calculations, thermodynamic modeling, materials processing, and battery assembling and testing. This fundamental knowledge base also builds the genome foundation to discover new cathode materials.The proposal's intellectual merit lies on its collaborative, synergistic approaches between theory, computation, and experiments to rapidly build a chemistry-processing-structure-property-performance knowledge base for the Li- and Mn-rich layered cathode materials. This integrated approach will be based on the combined expertise in simulations, syntheses, and evaluation of battery materials. The research project aims to move the low cost and high-energy-density cathode materials research in the US to a new level by further building the foundation to answer fundamental questions that can only be addressed efficiently via combined computational and experimental methodology. These include: what is the best combination of Li/Mn/M layers in terms of cost and performance? what are the composition/temperature variations for their robust processing? and what are the potential outliers of alloying elements for superior performances?Broader impacts include following aspects, in addition to economic impact of low-cost and high-energy-density cathode materials on battery manufacturing, a) educate students to be professionals mastering both innovative computational and experimental approaches with cross-disciplinary knowledge of materials and batteries; b) encourage students to make presentations at professional meetings to improve communication skills; c) foster students' writing skills through peer reviewed journal publications; d) participate in activities to broaden the participation of underrepresented groups through the SEEMS (Summer Experience in Earth and Mineral Science) programs for high school students and WISER (Women in Science and Engineering Research) program for first year students, e) contribute to new materials research paradigm in shortening the time for developing new materials and improving existing materials to minimize the cost to the society and the negative impact to the environment, and increasing the competitiveness of US manufacturing.
技术摘要近年来,人们发现了一类新的高能量密度、富锂、富锰的层状正极材料。该项目旨在通过集成第一性原理计算、CALPHAD建模、材料加工以及电池组装和测试,建立设计和加工具有所需性能的材料所需的基础知识基础。这一基础知识库也为发现新的阴极材料奠定了基因组基础。新阴极材料存在于xLi2MnO3ª(1-x)LiMO2的多组分空间中,其中M是合金元素,包括Mn, Co和Ni。在该项目中,第一性原理计算将用于系统地研究这些常见合金元素和潜在异常值对电子结构和电荷转移的影响,并预测单个相的热力学性质作为温度和成分的函数。利用CALPHAD模型建立相关系,优化组成空间(x和M),实现更优的充放电性能。为了验证第一性原理计算和CALPHAD模型的预测,阴极材料将以定制的成分合成,并组装硬币电池来测试电池性能。项目目标是:1。1 .建立对合金元素影响的基本认识,寻找潜在的异常值;2 .建立Li-Mn-Co-Ni-O体系及其潜在异常值的热力学描述;基于计算建模和反馈的阴极材料合成和表征以及电池性能测试,以改进数据库。新材料的开发以及对现有材料进行裁剪以满足新需求的能力对于不断提高人类生活质量至关重要。材料是美国制造业全球竞争力的决定性因素,因为材料占大多数制成品成本的一半以上。锂离子可充电电池是电子设备和电动汽车等众多应用所需的低成本和高能量密度存储的关键组成部分。由于目前可充电锂离子电池所用阴极的成本和能量密度的限制,新型阴极的开发至关重要。最近,发现了一类新的高能量密度、富锂、富锰的层状正极材料。该项目旨在通过综合第一性原理计算、热力学建模、材料加工以及电池组装和测试,建立设计和加工具有所需性能的材料所需的基础知识基础。这一基础知识库也为发现新的阴极材料奠定了基因组基础。该提案的智力价值在于其理论,计算和实验之间的协作,协同方法,以快速建立富锂和富锰层状阴极材料的化学-加工-结构-性能-性能知识库。这种综合方法将基于电池材料模拟、合成和评估方面的综合专业知识。该研究项目旨在通过进一步建立基础来回答只有通过计算和实验相结合的方法才能有效解决的基本问题,从而将美国的低成本和高能量密度阴极材料研究提升到一个新的水平。其中包括:在成本和性能方面,Li/Mn/M层的最佳组合是什么?它们坚固加工的成分/温度变化是什么?合金元素的潜在异常值是什么?更广泛的影响包括以下几个方面,除了低成本和高能量密度正极材料对电池制造的经济影响外,a)教育学生成为掌握材料和电池跨学科知识的创新计算和实验方法的专业人士;B)鼓励学生在专业会议上做演讲,以提高沟通技巧;C)通过同行评议的期刊出版物培养学生的写作技能;d)通过高中生的地球与矿物科学暑期体验项目和一年级学生的科学与工程研究女性项目,参与扩大代表性不足群体参与的活动;e)为新材料研究范式做出贡献,缩短开发新材料的时间,改进现有材料,以尽量减少对社会的成本和对环境的负面影响;提高美国制造业的竞争力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zi-Kui Liu其他文献

Lattice dynamics, thermodynamics and elastic properties of C22-Zr6FeSn2 from first-principles calculations
第一性原理计算 C22-Zr6FeSn2 的晶格动力学、热力学和弹性性质
  • DOI:
    10.1016/j.jnucmat.2016.07.027
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Xuan-Kai Feng;Siqi Shi;Jian-Yun Shen;Shun-Li Shang;Mei-Yi Yao;Zi-Kui Liu
  • 通讯作者:
    Zi-Kui Liu
Influence of accelerated corrosion on Al/steel RSW joints by emin situ/em compression tests
通过EMIN SITU/EM压缩测试,加速腐蚀对Al/钢RSW接头的影响
Electrochemical recovery of Nd using liquid metals (Bi and Sn) in LiCl-KCl-NdClsub3/sub
  • DOI:
    10.1016/j.electacta.2022.140655
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Sanghyeok Im;Nathan D. Smith;Stephanie Castro Baldivieso;Jarrod Gesualdi;Zi-Kui Liu;Hojong Kim
  • 通讯作者:
    Hojong Kim
Hierarchical Nonequilibrium Thermodynamics of Thermally Activated Dislocation Plasticity of Metals and Alloys
金属与合金热激活位错塑性的层次非平衡热力学
  • DOI:
    10.1016/j.ijplas.2025.104303
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    12.800
  • 作者:
    David L. McDowell;Zi-Kui Liu
  • 通讯作者:
    Zi-Kui Liu
CALPHAD/first-principles re-modeling of the Co–Y binary system
  • DOI:
    10.1016/j.jallcom.2005.06.037
  • 发表时间:
    2006-01-05
  • 期刊:
  • 影响因子:
  • 作者:
    William Golumbfskie;Zi-Kui Liu
  • 通讯作者:
    Zi-Kui Liu

Zi-Kui Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zi-Kui Liu', 18)}}的其他基金

POSE: Phase I: A Path to Sustaining a New Open-Source Ecosystem for Materials Science (OSEMatS)
POSE:第一阶段:维持材料科学新开源生态系统 (OSEMatS) 的途径
  • 批准号:
    2229690
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate Prediction of Phase Stability for Chemistry and Process Design of Ni-based Superalloys
合作研究:准确预测镍基高温合金化学和工艺设计的相稳定性
  • 批准号:
    1825538
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
SEP Collaborative: Routes to Earth Abundant Kesterite-based Thin Film Photovoltaic Materials
SEP 合作:通往地球丰富的基于锌黄锡矿的薄膜光伏材料的途径
  • 批准号:
    1230924
  • 财政年份:
    2012
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
I/UCRC CGI: Center for Computational Materials Design (CCMD), Phase II
I/UCRC CGI:计算材料设计中心 (CCMD),第二阶段
  • 批准号:
    1034965
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Computational and Experimental Investigations of Magnesium Alloys
镁合金的计算和实验研究
  • 批准号:
    1006557
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Proposal for the 2007 CALPHAD Meeting at The Pennsylvania State University; University Park, PA; May 6-11, 2007
宾夕法尼亚州立大学 2007 年 CALPHAD 会议提案;
  • 批准号:
    0703832
  • 财政年份:
    2007
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Computational and Experimental Investigations of Magnesium Alloys
镁合金的计算和实验研究
  • 批准号:
    0510180
  • 财政年份:
    2005
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Center for Computational Materials Design (CCMD)
计算材料设计中心(CCMD)
  • 批准号:
    0541674
  • 财政年份:
    2005
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Planning Proposal for Establishing an I/UCRC for Computational Materials Design (CCMD)
建立计算材料设计 I/UCRC (CCMD) 的规划提案
  • 批准号:
    0433033
  • 财政年份:
    2004
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
ITR: Computational Tools for Multicomponent Materials Design
ITR:多组分材料设计的计算工具
  • 批准号:
    0205232
  • 财政年份:
    2002
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

New Signal Design and Processing for Future Vehicular Communications (DRIVE)
未来车辆通信 (DRIVE) 的新信号设计和处理
  • 批准号:
    EP/X035352/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
A RadBackCom Approach to Integrated Sensing and Communication: Waveform Design and Receiver Signal Processing
RadBackCom 集成传感和通信方法:波形设计和接收器信号处理
  • 批准号:
    2335765
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
DMREF: Optimizing Problem formulation for prinTable refractory alloys via Integrated MAterials and processing co-design (OPTIMA)
DMREF:通过集成材料和加工协同设计 (OPTIMA) 优化可打印耐火合金的问题表述
  • 批准号:
    2323611
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Sparse Sensor Array Design and Processing
稀疏传感器阵列设计与处理
  • 批准号:
    2236023
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
  • 批准号:
    2312741
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Accelerated Discovery of Sustainable Bioplastics: Automated, Tunable, Integrated Design, Processing and Modeling
DMREF/合作研究:加速可持续生物塑料的发现:自动化、可调、集成设计、加工和建模
  • 批准号:
    2323976
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
  • 批准号:
    2238415
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
DMREF/Collaborative Research: Accelerated Discovery of Sustainable Bioplastics: Automated, Tunable, Integrated Design, Processing and Modeling
DMREF/合作研究:加速可持续生物塑料的发现:自动化、可调、集成设计、加工和建模
  • 批准号:
    2323977
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
  • 批准号:
    2312739
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Accelerated Discovery of Sustainable Bioplastics: Automated, Tunable, Integrated Design, Processing and Modeling
DMREF/合作研究:加速可持续生物塑料的发现:自动化、可调、集成设计、加工和建模
  • 批准号:
    2323979
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了