Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
基本信息
- 批准号:2312741
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Database analytics is crucial for decision-making across various industries and fields of inquiry. However, there is a challenge: analyzing large amounts of data using traditional methods takes more time and money as the volume of data grows. Resolving this issue is vital for enterprises to stay competitive through fast and accurate data-driven decision-making and to keep up with rapid growth in data volumes. In the past, hardware and software for analytics could be developed separately, benefiting from Moore's Law (doubling of transistor density with each transistor generation) and Dennard scaling (which allowed Moore's Law to proceed without increasing power density). This scaling allowed the industry to steadily improve the performance of general-purpose hardware. However, we have now reached the physical limits of these trends and need new hardware approaches to enhance analytics speed and efficiency. Furthermore, processing units are now much faster than memory, so applications with large volumes of data are increasingly bottlenecked by memory accesses. This research, therefore, focuses on memory devices, in particular designing ``intelligent'' memory capable of computing results near the stored data, and proposes a solution by redesigning both hardware and software components of an analytics pipeline to work synergistically, addressing the data analytics performance issue from the ground up. This innovative approach has the potential to significantly improve the efficiency of data analytics. The project is a collaboration between one database and software researcher at the University of Wisconsin-Madison (UW) and two computer architecture and systems researchers at Cornell University and the University of Virginia (UVA). The project is organized into four thrusts. Thrust 1 aims to develop mechanisms for in-place data analytics query processing on the dynamic random access memory (DRAM) side and explore the synergies between intelligent DRAM and other processing units. Thrust 2 focuses on processing in memory (PIM) designs for static random-access memory (SRAM)-based caches, exploring associative processing (AP) and its applicability to data analytics workloads. Thrust 3 takes a holistic approach to accelerate analytics queries across both SRAM and DRAM-based PIM designs. It proposes a Domain-Specific Language (DSL)-based approach using an operational algebra, decomposing queries into a dataflow graph and optimizing their execution across different PIMs and the Central Processing Unit (CPU). Finally, Thrust 4 addresses the need for evaluation frameworks in the database-hardware co-design approach by developing a simulation infrastructure and benchmarks that can be used by the broader architecture and database research communities. Besides training students involved in this project across the hardware-software boundaries, the project will also support outreach efforts in entrepreneurship education at UW. Additionally, there are outreach plans to Native American high school students through an effort at Cornell, and at UVA, the project will contribute to ongoing efforts to build long-term collaborations with Historically Black Colleges and Universities (HBCUs) and Minority-Serving Institutions (MSIs) in the Virginia area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据库分析对于不同行业和查询领域的决策至关重要。然而,存在一个挑战:随着数据量的增长,使用传统方法分析大量数据需要更多的时间和金钱。解决这一问题对于企业通过快速、准确的数据驱动决策保持竞争力以及跟上数据量的快速增长至关重要。在过去,分析的硬件和软件可以单独开发,得益于摩尔定律(每产生一次晶体管,晶体管密度翻一番)和Dennard比例(这允许摩尔定律在不增加功率密度的情况下继续进行)。这种扩展使该行业能够稳步提高通用硬件的性能。然而,我们现在已经达到了这些趋势的物理极限,需要新的硬件方法来提高分析速度和效率。此外,处理单元现在比内存快得多,因此拥有大量数据的应用程序越来越多地受到内存访问的瓶颈。因此,这项研究侧重于存储设备,特别是设计能够计算存储数据附近结果的“智能”存储器,并提出了一种解决方案,通过重新设计分析管道的硬件和软件组件以协同工作,从根本上解决数据分析性能问题。这种创新的方法有可能显著提高数据分析的效率。该项目是威斯康星大学麦迪逊分校(UW)的一个数据库和软件研究人员,以及康奈尔大学和弗吉尼亚大学(UVA)的两名计算机架构和系统研究人员合作完成的。这个项目被组织成四个项目。推力1旨在开发动态随机存取存储器(DRAM)端的就地数据分析查询处理机制,并探索智能DRAM与其他处理单元之间的协同效应。推力2专注于基于静态随机存取存储器(SRAM)的高速缓存的内存中处理(PIM)设计,探索关联处理(AP)及其对数据分析工作负载的适用性。推力3采用整体方法来加速跨SRAM和基于DRAM的PIM设计的分析查询。它提出了一种基于领域特定语言(DSL)的方法,使用操作代数,将查询分解到数据流图中,并在不同的PIM和中央处理单元(CPU)上优化它们的执行。最后,推力4通过开发可供更广泛的体系结构和数据库研究界使用的模拟基础设施和基准,解决了数据库-硬件联合设计方法中对评价框架的需求。除了培训参与该项目的学生跨越硬件和软件的界限外,该项目还将支持威斯康星大学创业教育的外展工作。此外,在康奈尔大学和弗吉尼亚大学,该项目还通过努力向美国原住民高中生推广计划,该项目将有助于与弗吉尼亚州地区历史上的黑人学院和少数族裔服务机构(MSI)建立长期合作关系。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jose Martinez其他文献
Atmospheric Moisture Decreases Mid-Latitude Eddy Kinetic Energy
大气湿度降低中纬度涡动能
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
N. Lutsko;Jose Martinez;D. Koll - 通讯作者:
D. Koll
Unilateral “akathisia” in a patient with AIDS and a toxoplasmosis subthalamic abscess
艾滋病合并弓形体丘脑下脓肿患者的单侧“静坐不能”
- DOI:
10.1212/wnl.39.3.449 - 发表时间:
1989 - 期刊:
- 影响因子:9.9
- 作者:
E. Carrazana;E. Rossitch;Jose Martinez - 通讯作者:
Jose Martinez
Perioperative management of fulminant and subfulminant hepatic failure with therapeutic plasmapheresis.
暴发性和亚暴发性肝衰竭的围手术期治疗性血浆置换治疗。
- DOI:
- 发表时间:
1989 - 期刊:
- 影响因子:0.9
- 作者:
S. Munoz;Samir K. Ballas;M. Moritz;Jose Martinez;Lawrence S. Friedman;B. Jarrell;Willis C. Maddrey - 通讯作者:
Willis C. Maddrey
Carbidopa: A Novel Approach to Treating Paroxysmal Hypertension in Afferent Baroreflex Failure (P1.089)
卡比多巴:治疗传入压力反射衰竭中阵发性高血压的新方法 (P1.089)
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:9.9
- 作者:
L. Norcliffe;J. Palma;Jose Martinez;H. Kaufmann - 通讯作者:
H. Kaufmann
Design, simulation, and fabrication of a MEMs switched superconducting microstrip hairpin filter
MEM 开关超导微带发夹滤波器的设计、仿真和制造
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jose Martinez;Y. Hijazi;M. Brzhezinskaya;A. Bogozi;J. Noel;Y. Vlasov;G. Larkins - 通讯作者:
G. Larkins
Jose Martinez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jose Martinez', 18)}}的其他基金
Sovereign Haze: Hashish, Trafficking and the Illicit in the Western Mediterranean.
主权阴霾:西地中海的大麻、贩运和非法行为。
- 批准号:
ES/T002867/2 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Sovereign Haze: Hashish, Trafficking and the Illicit in the Western Mediterranean.
主权阴霾:西地中海的大麻、贩运和非法行为。
- 批准号:
ES/T002867/1 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Research Grant
EAGER: Overcoming Thermal Sensitivity of CMOS-Compatible Nanophotonic Devices in Future Microprocessor Designs
EAGER:在未来微处理器设计中克服 CMOS 兼容纳米光子器件的热敏感性
- 批准号:
1143893 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CSR---SMA: Computer Architecture Optimization: A Machine Learning Approach
CSR---SMA:计算机架构优化:一种机器学习方法
- 批准号:
0720773 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Power-Performance Considerations of Thread-level Parallelism in On-chip Multicore Architectures
职业:片上多核架构中线程级并行的功耗性能考虑
- 批准号:
0545995 - 财政年份:2006
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative SMA: Dynamic Program Phase Adaptation and Reconfiguration in Multiprocessor Systems
协作 SMA:多处理器系统中的动态程序阶段适应和重新配置
- 批准号:
0509404 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant