DMREF/Collaborative Research: Accelerated Discovery of Sustainable Bioplastics: Automated, Tunable, Integrated Design, Processing and Modeling

DMREF/合作研究:加速可持续生物塑料的发现:自动化、可调、集成设计、加工和建模

基本信息

  • 批准号:
    2323979
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Despite years of recycling efforts, only about 10 percent of polymer waste ends up in recycling facilities, with the majority still accumulating in landfills or oceans, emphasizing the need for eco-friendly materials combining renewable sourcing, sustainable processing, and biodegradability. Thermoformable biopolymer assemblies or bioplastics are eco-friendly materials that could be sourced from biological cell or tissue (biomatter), without expensive and wasteful extraction and pre-processing. The most significant limitation in the ability to design these bioplastics is a poor understanding of the fundamental mechanisms controlling the transformation of biomatter to cohesive bioplastics. This Designing Materials to Revolutionize and Engineer our Future (DMREF) grant supports research that will combine high-throughput data capture, multiscale modeling, and machine learning to understand the molecular and chemical mechanisms controlling the transition from organism to bioplastic during processing. With that understanding, design pathways will be developed to tailor the processing and composition of the initial structure to control the macroscopic properties, and degradation that occurs during and after use. The broad impact of this work will be a new class of entirely biodegradable plastics with performance comparable to commodity plastics but manufactured sustainably. To support the next-generation sustainable materials workforce, the grant will also support mentoring of graduate and undergraduate students, active engagement in outreach activities, and efforts to enhance diversity and inclusivity in STEM.An emerging transformative concept in developing eco-friendly materials is to use biological matter without any extraction process to create bioplastics. Significant challenges remain in understanding how mixtures of biopolymers transform into thermoformable bioplastics and how the processing parameters control structure and properties. To provide key insights, this project will use high throughput methods to measure processing, spectroscopic, and morphology features and apply machine learning methods to identify the key descriptors controlling the transformation from organism to plastic. Molecular dynamics simulations and high-fidelity experiments will augment the understanding of the reactions towards bioplastic formation as well as biodegradation. Detailed structure and property measurements will be used to validate a finite element analysis tool that will enable the identification of the optimal structure to achieve properties comparable to commercial plastics using high throughput methods. Spirulina, an abundant photosynthetic microorganism that has been demonstrated to produce bioplastics when processed with heat and pressure will serve as a proof-of-concept system. The fundamental contribution of this project will be a design approach that accounts for the complexities of the transition of raw biomatter to bioplastics, exemplifying the Materials Genome Initiative's emphasis on predictive materials design and data-driven approaches to foster sustainable and innovative materials for a circular economy. This project is supported by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) of the Directorate for Engineering (ENG), the Division of Materials Research (DMR) of the Directorate for Mathematical and Physical Sciences (MPS), and the Division of Information and Intelligent Systems (IIS) of the Directorate for Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管多年来的回收努力,只有大约10%的聚合物废物最终进入回收设施,其中大部分仍堆积在垃圾填埋场或海洋中,这强调了将可再生来源、可持续加工和可生物降解性结合在一起的生态友好材料的必要性。可热成形生物聚合物组件或生物塑料是一种环保材料,可以从生物细胞或组织(生物材料)中获得,而不需要昂贵和浪费的提取和前处理。设计这些生物塑料的能力最大的限制是对控制生物材料向粘性生物塑料转变的基本机制缺乏了解。这项旨在革新和设计我们未来的材料(DMREF)基金将支持将高通量数据捕获、多尺度建模和机器学习相结合的研究,以了解在加工过程中控制从生物到生物塑料转变的分子和化学机制。在了解了这一点后,将开发设计路径来定制初始结构的加工和组成,以控制宏观性能以及在使用过程中和使用后发生的退化。这项工作的广泛影响将是一种新的完全可生物降解的塑料,其性能与商品塑料相当,但可持续制造。为了支持下一代可持续材料劳动力,这笔赠款还将支持指导研究生和本科生,积极参与外联活动,并努力提高STEM的多样性和包容性。开发生态友好型材料的一个新的变革性概念是利用不经任何提取过程的生物物质来创造生物塑料。在理解生物聚合物混合物如何转化为热成型生物塑料以及工艺参数如何控制结构和性能方面仍然存在重大挑战。为了提供关键的见解,该项目将使用高通量方法来测量加工、光谱和形态特征,并应用机器学习方法来识别控制从有机体向塑料转化的关键描述符。分子动力学模拟和高保真实验将加深对生物塑料形成和生物降解反应的理解。将使用详细的结构和性能测量来验证有限元分析工具,该工具将能够识别最佳结构,以实现与使用高通量方法的商业塑料相媲美的性能。螺旋藻是一种丰富的光合作用微生物,已被证明在加热和压力处理时可以产生生物塑料,它将作为一个概念验证系统。该项目的根本贡献将是一种考虑到生物原料向生物塑料过渡的复杂性的设计方法,体现了材料基因组倡议对预测性材料设计和数据驱动的方法的重视,以促进循环经济的可持续和创新材料。该项目由工程局(ENG)的土木、机械和制造业创新处(CMMI)、数学和物理科学局(MPS)的材料研究部(DMR)以及计算机和信息科学与工程局(CEISE)的信息和智能系统部(IIS)支持。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kayla Sprenger其他文献

Kayla Sprenger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了