Modeling and numerical simulation of yield stress fluids, and studies of viscoelasticity and confinement in the flow of two immiscible fluids

屈服应力流体的建模和数值模拟,以及两种不混溶流体流动中的粘弹性和约束研究

基本信息

项目摘要

The project is devoted to the modeling and numerical simulation of yield stress fluids, and studies of viscoelasticity and confinement in the flow of two immiscible fluids. The majority of the effort is focused on the following three themes: (i) Recent developments have enabled detailed measurements of the properties of a class of suspensions known as thixotropic yield stress fluids. An example is the flow of ketchup under applied stresses. Prior theoretical models require the input of measured quantities such as a yield stress, or to pose a phenomenological equation for the structure of the microcomponents. In contrast, a new mathematical perspective is explored in this project, in which yielding is an output of a systematically derived viscoelastic constitutive model in the limit of large relaxation time. Direct numerical simulations, in conjunction with multi-scale perturbation techniques based on slow and fast time scales, will enable the prediction of several experimentally observed phenomena, such as the hysteretic loop for up-down ramping of applied stress. (ii) The technological drive toward smaller scales has spawned new modeling and simulation challenges for droplet evolution in devices that are as small as the droplet itself. Confinement can enhance drop elongation, lead to new modes of drop breakup, and introduce numerical difficulties with respect to the constitutive laws and interface tracking. Capillary-focusing is a recently developed technology for the production of monodisperse submicron-sized droplets, which is not completely understood. This project sheds light on the physical mechanisms at work, by modeling the Hele-Shaw geometry and with direct numerical simulations. (iii) The advantages in combining the desired properties of two different liquids to produce a new blended mixture are well known. The quality of the blend is strongly dependent on the size of the dispersed droplets and their distribution. Therefore, it is of practical importance to understand how a droplet evolves in a matrix fluid, and to predict the influence of the rheological properties of each constituent. A novel viscoelastic height function algorithm will be developed and implemented in this project, and optimized for drop breakup simulations with possibly high gradients of stress. This project contributes to the understanding of physical mechanisms that control practical applications, such as recycling plastics for environmental sustainability, predicting the dynamics of droplets and particulates in confined flows for biomedical drug delivery, and understanding fundamental processes that improve nanofluidic technology for the pharmaceutical industry. The use of a computational infrastructure such as XSEDE will enable direct numerical simulations for comparison with experimental data. The knowledge gained from this research will be disseminated to a broader scientific audience at conferences on mathematics, physics and engineering, and through journal publications. The outcomes include the training of graduate students, outreach to the local K-12 audience, and cross-disciplinary partnerships.
该项目致力于屈服应力流体的建模和数值模拟,以及两种不混溶流体流动中的粘弹性和约束研究。大部分工作集中在以下三个主题:(i)最近的发展已经能够对称为触变屈服应力流体的一类悬浮液的特性进行详细测量。一个例子是番茄酱在施加压力下的流动。先前的理论模型需要输入测量量(例如屈服应力),或者提出微元件结构的唯象方程。相比之下,该项目探索了一种新的数学视角,其中屈服是在大松弛时间限制下系统导出的粘弹性本构模型的输出。直接数值模拟与基于慢速和快速时间尺度的多尺度扰动技术相结合,将能够预测几种实验观察到的现象,例如施加应力上下斜坡的磁滞回线。 (ii) 向更小尺度发展的技术驱动力为与液滴本身一样小的设备中的液滴演化带来了新的建模和模拟挑战。限制可以增强液滴伸长,导致液滴破裂的新模式,并引入本构定律和界面跟踪方面的数值困难。毛细管聚焦是一项最近开发的用于生产单分散亚微米级液滴的技术,但目前尚未完全了解。该项目通过 Hele-Shaw 几何模型建模和直接数值模拟,揭示了工作中的物理机制。 (iii) 结合两种不同液体的所需特性以产生新的混合混合物的优点是众所周知的。共混物的质量很大程度上取决于分散液滴的尺寸及其分布。因此,了解液滴在基质流体中如何演化并预测每种成分的流变特性的影响具有实际意义。 该项目将开发和实施一种新颖的粘弹性高度函数算法,并针对可能具有高应力梯度的液滴破裂模拟进行优化。该项目有助于理解控制实际应用的物理机制,例如回收塑料以实现环境可持续性,预测生物医学药物输送的受限流中液滴和颗粒的动态,以及了解改进制药行业纳米流体技术的基本过程。使用 XSEDE 等计算基础设施将能够直接进行数值模拟,以便与实验数据进行比较。从这项研究中获得的知识将通过数学、物理和工程会议以及期刊出版物传播给更广泛的科学受众。成果包括研究生培训、当地 K-12 受众的推广以及跨学科合作。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equibiaxial extension of a viscoelastic partially extending strand convection model with large relaxation time
大弛豫时间粘弹性部分延伸股对流模型的等双轴延伸
  • DOI:
    10.1007/s00397-015-0853-z
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Grant, Holly V.;Renardy, Yuriko
  • 通讯作者:
    Renardy, Yuriko
A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations
  • DOI:
    10.1063/1.4817374
  • 发表时间:
    2013-08
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    S. Afkhami;Y. Renardy
  • 通讯作者:
    S. Afkhami;Y. Renardy
Stretch and hold: The dynamics of a filament governed by a viscoelastic constitutive model with thixotropic yield stress behavior
拉伸和保持:由具有触变屈服应力行为的粘弹性本构模型控制的长丝动力学
  • DOI:
    10.1063/1.4948661
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Renardy, Y.;Grant, H. V.
  • 通讯作者:
    Grant, H. V.
Thixotropy in yield stress fluids as a limit of viscoelasticity
屈服应力流体中的触变性作为粘弹性的极限
  • DOI:
    10.1093/imamat/hxw031
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Renardy, Michael;Renardy, Yuriko
  • 通讯作者:
    Renardy, Yuriko
Stability of shear banded flow for a viscoelastic constitutive model with thixotropic yield stress behavior
具有触变屈服应力行为的粘弹性本构模型的剪切带流稳定性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuriko Renardy其他文献

Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling
  • DOI:
    10.1007/s10665-017-9931-9
  • 发表时间:
    2017-08-18
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Shahriar Afkhami;Yuriko Renardy
  • 通讯作者:
    Yuriko Renardy
Pattern selection in the Bénard problem for a viscoelastic fluid
On the Stability of Inviscid Parallel Shear Flows with a Free Surface

Yuriko Renardy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuriko Renardy', 18)}}的其他基金

Computational study of drop deformation in systems with two immiscible liquids
两种不混溶液体体系中液滴变形的计算研究
  • 批准号:
    0907788
  • 财政年份:
    2009
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Standard Grant
The development and implementation of algorithms to investigate drop fragmentation under shear for viscoelastic liquids with surfactant
研究含表面活性剂的粘弹性液体在剪切作用下液滴破碎的算法的开发和实施
  • 批准号:
    0456086
  • 财政年份:
    2005
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Standard Grant
Interfacial Processing for Emulsions: Droplet Breakup with Inertia, Non-Newtonian and Surfactant Effects
乳液的界面处理:惯性、非牛顿和表面活性剂效应的液滴破碎
  • 批准号:
    0090381
  • 财政年份:
    2001
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Numerical Investigation of Two-Fluid Flows of Viscous Fluids
美法合作研究:粘性流体二流流动的数值研究
  • 批准号:
    9815106
  • 财政年份:
    1999
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Standard Grant
Interfacial Dynamics in Bicomponent Materials: Viscous, Viscoelastic and Thermal Effects
双组分材料中的界面动力学:粘性、粘弹性和热效应
  • 批准号:
    9612308
  • 财政年份:
    1997
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Continuing Grant
Interfacial Shapes in the Design of Composite Polymeric Materials
复合高分子材料设计中的界面形状
  • 批准号:
    9307238
  • 财政年份:
    1993
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Stability and Bifurcation in Two-Layer Flows
数学科学:两层流的稳定性和分岔
  • 批准号:
    8902166
  • 财政年份:
    1989
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stability and Bifurcation in Two-Layer Shearing Flows
数学科学:两层剪切流的稳定性和分岔
  • 批准号:
    8720298
  • 财政年份:
    1988
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stability and Bifurcation in Fluid Dynamics
数学科学:流体动力学的稳定性和分岔
  • 批准号:
    8615203
  • 财政年份:
    1986
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Standard Grant

相似国自然基金

超声行波微流体驱动机理的试验研究
  • 批准号:
    51075243
  • 批准年份:
    2010
  • 资助金额:
    39.0 万元
  • 项目类别:
    面上项目
关于图像处理模型的目标函数构造及其数值方法研究
  • 批准号:
    11071228
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
  • 批准号:
    40972154
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
  • 批准号:
    10872219
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

LEAPS-MPS: Robust and High Order Numerical Simulation for Phase Field Modeling
LEAPS-MPS:相场建模的鲁棒高阶数值模拟
  • 批准号:
    2213436
  • 财政年份:
    2022
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Standard Grant
Numerical Modeling and Experimental Simulation in Earthquake Engineering
地震工程数值模拟与实验模拟
  • 批准号:
    CRC-2017-00238
  • 财政年份:
    2022
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Canada Research Chairs
Towards the Innovation of Helical Piles and Groups in Sand: Centrifuge Modeling and Numerical Simulation
沙土中螺旋桩和群的创新:离心机建模和数值模拟
  • 批准号:
    536652-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Numerical Modeling And Experimental Simulation In Earthquake Engineering
地震工程数值模拟与实验模拟
  • 批准号:
    CRC-2017-00238
  • 财政年份:
    2021
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Canada Research Chairs
Towards the Innovation of Helical Piles and Groups in Sand: Centrifuge Modeling and Numerical Simulation
沙土中螺旋桩和群的创新:离心机建模和数值模拟
  • 批准号:
    536652-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
AI aided turbulent combustion modeling based on advanced laser diagnostics and direct numerical simulation data science
基于先进激光诊断和直接数值模拟数据科学的人工智能辅助湍流燃烧建模
  • 批准号:
    20H00224
  • 财政年份:
    2020
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Numerical Modeling and Experimental Simulation in Earthquake Engineering
地震工程数值模拟与实验模拟
  • 批准号:
    CRC-2017-00238
  • 财政年份:
    2020
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Canada Research Chairs
Numerical Modeling and Experimental Simulation in Earthquake Engineering
地震工程数值模拟与实验模拟
  • 批准号:
    CRC-2017-00238
  • 财政年份:
    2019
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Canada Research Chairs
Numerical Modeling and Experimental Simulation in Earthquake Engineering
地震工程数值模拟与实验模拟
  • 批准号:
    CRC-2017-00238
  • 财政年份:
    2018
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Canada Research Chairs
The world's largest Direct Numerical Simulation of turbulent channel flows and its application of modeling
全球最大的湍流河道流直接数值模拟及其建模应用
  • 批准号:
    18K03923
  • 财政年份:
    2018
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了