Optimization with Uncertainties over Time: Theory and Algorithms
随时间变化的不确定性优化:理论和算法
基本信息
- 批准号:1312907
- 负责人:
- 金额:$ 18.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Typically, optimization deals exclusively with instances of static problems, with few exceptions. Some exceptions include stochastic optimization and on-line optimization models that treat problems with time-varying uncertainties in the objective functions. Stochastic optimization anticipates that these uncertainties occur in a random fashion and on-line optimization allows for objective functions to be drawn from some pre-specified class of functions, again, in an arbitrary fashion. In the existing literature on constrained optimization, there is litte, if any, evidence of optimization theory or algorithms that treat the class of problems where the uncertainties are both in the objective function and the constraint. The goal of this proposal is to bridge this gap. The significance of the proposed research is twofold: (1) It critically expands the domain of optimization to include a new class of problems a with time-varying nature by developing their background theory; (2) It pioneers some new computational models for solving time-varying problems, and especially those currently arising in data classification, signal processing, and network resource allocations.The proposed research has the potential to impact the design and operation of autonomous engineering systems. It also has the potential to make contribution to the study of information processing systems that support human-centric operations and decisions. Some of the engineered systems that could benefit include: surveillance and monitory systems for tracking environmental and other changes, data management systems (including data analysis, information retrieval, decision support), and wireless communication systems, e.g. mobile phone networks. The proposed research could increase the stability, reliability, and the performance of these systems.
通常,优化只处理静态问题的实例,几乎没有例外。一些例外包括随机优化和在线优化模型,它们处理目标函数中具有时变不确定性的问题。随机优化预期这些不确定性以随机方式发生,并且在线优化允许再次以任意方式从某些预先指定的函数类中提取目标函数。在现有的关于约束优化的文献中,很少有优化理论或算法的证据来处理目标函数和约束中都存在不确定性的一类问题。这项提议的目标是弥合这一差距。这项研究的意义有两个方面:(1)通过发展背景理论,将优化的范围扩展到包括一类新的时变问题;(2)开创了一些新的计算模型来解决时变问题,特别是目前在数据分类、信号处理和网络资源分配方面出现的问题,该研究具有潜在的影响自主工程系统的设计和运行。它还有可能对支持以人为中心的操作和决策的信息处理系统的研究作出贡献。一些可能受益的工程系统包括:用于跟踪环境和其他变化的监视和监测系统、数据管理系统(包括数据分析、信息检索、决策支持)和无线通信系统,例如移动电话网络。所提出的研究可以提高这些系统的稳定性、可靠性和性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angelia Nedich其他文献
Angelia Nedich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angelia Nedich', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Foundations of Trust-Centered Multi-Agent Distributed Coordination
协作研究:SaTC:核心:媒介:以信任为中心的多智能体分布式协调的基础
- 批准号:
2147641 - 财政年份:2022
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
Collaborative Research: CIF:Medium: Harnessing Intrinsic Dynamics for Inherently Privacy-preserving Decentralized Optimization
合作研究:CIF:Medium:利用内在动力学实现固有隐私保护的去中心化优化
- 批准号:
2106336 - 财政年份:2021
- 资助金额:
$ 18.38万 - 项目类别:
Continuing Grant
AF: Small: Collaborative Research: Distributed Quasi-Newton Methods for Nonsmooth Optimization
AF:小:协作研究:非光滑优化的分布式拟牛顿方法
- 批准号:
1717391 - 财政年份:2017
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
Four Mathematical Programming Paradigms with Operations Research Applications
运筹学应用的四种数学编程范式
- 批准号:
0969600 - 财政年份:2010
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
Early Concept Grant for Exploratory Research ( EAGER ) Dynamic Traffic Equilibrium Problems: Distributed Algorithms and Error Analysis
探索性研究早期概念资助 (EAGER) 动态流量均衡问题:分布式算法和误差分析
- 批准号:
0948905 - 财政年份:2009
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
CAREER: Cooperative Multi-Agent Optimization
职业:协作多智能体优化
- 批准号:
0742538 - 财政年份:2008
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
相似海外基金
Unraveling critical neutrino interaction uncertainties with the upgraded T2K experiment
通过升级的 T2K 实验揭示关键的中微子相互作用的不确定性
- 批准号:
24K17065 - 财政年份:2024
- 资助金额:
$ 18.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Managing uncertainties in renewable powered grids
职业:管理可再生能源电网的不确定性
- 批准号:
2338383 - 财政年份:2024
- 资助金额:
$ 18.38万 - 项目类别:
Continuing Grant
Quantifying the personalised impact of physical and biological uncertainties in customised radiotherapy treatment planning
量化定制放射治疗计划中物理和生物不确定性的个性化影响
- 批准号:
2907229 - 财政年份:2024
- 资助金额:
$ 18.38万 - 项目类别:
Studentship
Smart ResSim Technology - Reducing Uncertainties for Advanced CO2 and H2 Storage Processes
Smart ResSim 技术 - 减少先进 CO2 和 H2 存储过程的不确定性
- 批准号:
10090798 - 财政年份:2024
- 资助金额:
$ 18.38万 - 项目类别:
Collaborative R&D
CAREER: Cyber Resilient Navigation for Autonomous Systems under Threat Uncertainties and Contested Environments
职业:威胁不确定性和竞争环境下自主系统的网络弹性导航
- 批准号:
2340456 - 财政年份:2024
- 资助金额:
$ 18.38万 - 项目类别:
Continuing Grant
Great Antarctic uncertainties: How to better predict rising sea levels
南极的巨大不确定性:如何更好地预测海平面上升
- 批准号:
DE240100267 - 财政年份:2024
- 资助金额:
$ 18.38万 - 项目类别:
Discovery Early Career Researcher Award
Development of autonomous operation scenario for space smart antenna system considering uncertainties
考虑不确定性的空间智能天线系统自主运行场景开发
- 批准号:
23H01607 - 财政年份:2023
- 资助金额:
$ 18.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and implementation of protected area introduction designs that are robust to future uncertainties
开发和实施对未来不确定性具有鲁棒性的保护区引入设计
- 批准号:
23H03585 - 财政年份:2023
- 资助金额:
$ 18.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
BoCP-Design: Climate change and ecosystem functioning: reducing critical uncertainties about ecosystem acclimation
BoCP-Design:气候变化和生态系统功能:减少生态系统适应的关键不确定性
- 批准号:
2225103 - 财政年份:2023
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
Illuminating Deep Uncertainties in the Estimation of Irrigation Water Withdrawals
阐明灌溉取水量估算中的深层不确定性
- 批准号:
EP/Y02463X/1 - 财政年份:2023
- 资助金额:
$ 18.38万 - 项目类别:
Research Grant