CAREER: Cooperative Multi-Agent Optimization

职业:协作多智能体优化

基本信息

  • 批准号:
    0742538
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-02-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development (CAREER) award provides funds for research and education activities on a common theme of optimization. The research objective is to establish new computational models, theoretical advances, and optimization algorithms for large scale distributed multi-agent systems. Of interest are systems that consist of interconnected multiple agents with different performance criteria. For various reasons, such as private or proprietary information, the agents do not share their own objectives, but do share scarce resources and want to cooperatively achieve a common goal. In the absence of a central coordinator or central information access, the coordination and optimization of such multi-agent systems have to be distributed. A primary research objective is to develop and study mathematical models, and design and analyze distributed multi-agent algorithms. In the distributed model, each agent acts locally and shares some limited information with its neighbors while the agent connectivity is dynamically changing with time. Another objective is to explore and quantify the performance limits of the algorithms under various characteristics of the system, such as the presence of communication noise or delays. The algorithmic development necessitates some fundamental research providing new mathematical tools for analysis and characterization of the system performance. The research is closely tied with educational plans to build new undergraduate and graduate optimization courses to equip the students with the knowledge to recognize, model, analyze, and solve optimization problems efficiently and systematically. A broader educational goal includes promoting interest for women and other under-represented groups in optimization, as well as outreaching and educating young minds about the significance and beauty of optimization.Successful completion of the research activities will lead to new efficient designs of decentralized coordination and optimization algorithms for large network systems. Also, it will lead to the designs of global optimization algorithms with guaranteed performance for a large class of non-linear non-convex problems. Overall, the results will enhance the existing knowledge in optimization in general. The planned educational activities will promote optimization and enhance the diversity in the student population.
这个教师早期职业发展(CAREER)奖为优化的共同主题的研究和教育活动提供资金。研究目标是建立新的计算模型,理论进展和优化算法的大规模分布式多智能体系统。感兴趣的是由具有不同性能标准的互连多个代理组成的系统。由于各种原因,例如私人或专有信息,代理人不共享自己的目标,但共享稀缺资源并希望合作实现共同目标。在没有中央协调器或中央信息访问的情况下,此类多代理系统的协调和优化必须是分布式的。一个主要的研究目标是开发和研究数学模型,设计和分析分布式多智能体算法。在分布式模型中,每个代理都在本地活动,并与其邻居共享有限的信息,而代理的连通性随时间动态变化。另一个目标是探索和量化的算法的性能限制下的各种特性的系统,如通信噪声或延迟的存在。 算法的发展需要一些基础研究,为系统性能的分析和表征提供新的数学工具。该研究与教育计划紧密联系,以建立新的本科生和研究生优化课程,使学生具备有效和系统地识别,建模,分析和解决优化问题的知识。一个更广泛的教育目标包括促进妇女和其他代表性不足的群体对优化的兴趣,以及外展和教育年轻人关于优化的意义和美感。研究活动的成功完成将导致大型网络系统的分散协调和优化算法的新的有效设计。此外,它将导致一个大类的非线性非凸问题的全局优化算法的设计与保证性能。总的来说,结果将提高现有的知识在优化一般。计划中的教育活动将促进优化和加强学生群体的多样性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Angelia Nedich其他文献

Angelia Nedich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Angelia Nedich', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Medium: Foundations of Trust-Centered Multi-Agent Distributed Coordination
协作研究:SaTC:核心:媒介:以信任为中心的多智能体分布式协调的基础
  • 批准号:
    2147641
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF:Medium: Harnessing Intrinsic Dynamics for Inherently Privacy-preserving Decentralized Optimization
合作研究:CIF:Medium:利用内在动力学实现固有隐私保护的去中心化优化
  • 批准号:
    2106336
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
AF: Small: Collaborative Research: Distributed Quasi-Newton Methods for Nonsmooth Optimization
AF:小:协作研究:非光滑优化的分布式拟牛顿方法
  • 批准号:
    1717391
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Optimization with Uncertainties over Time: Theory and Algorithms
随时间变化的不确定性优化:理论和算法
  • 批准号:
    1312907
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Four Mathematical Programming Paradigms with Operations Research Applications
运筹学应用的四种数学编程范式
  • 批准号:
    0969600
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Early Concept Grant for Exploratory Research ( EAGER ) Dynamic Traffic Equilibrium Problems: Distributed Algorithms and Error Analysis
探索性研究早期概念资助 (EAGER) 动态流量均衡问题:分布式算法和误差分析
  • 批准号:
    0948905
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Cooperative multi agent optimal adaptive control of large degree of freedom manipulators for an interdependent collaborative task
用于相互依赖的协作任务的大自由度机械臂的协作多智能体最优自适应控制
  • 批准号:
    2890822
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Self-adaptive and Cooperative Multi-agent Reinforcement Learning-based Network Traffic Control
基于强化学习的自适应协作多智能体网络流量控制
  • 批准号:
    23K19982
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Design for cooperative strategies of multi-agents using features of the environment
利用环境特征设计多智能体合作策略
  • 批准号:
    23K11225
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
HPC Application Analysis for Multi-Factor Cooperative Approximate Computing
多因素协同近似计算的HPC应用分析
  • 批准号:
    23K11056
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cooperative Beam Management for Cell-Free Multi-Layer Heterogeneous Network
无细胞多层异构网络的协作波束管理
  • 批准号:
    23K16870
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Intelligent and distributed multi-objective methods for optimization and control of multiagents/cooperative systems
用于多智能体/协作系统优化和控制的智能分布式多目标方法
  • 批准号:
    RGPIN-2021-03737
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Multi-Agent Systems: Cooperative Control, Estimation and Optimization
智能多智能体系统:协作控制、估计和优化
  • 批准号:
    568048-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Postdoctoral Fellowships
RINGS: Enabling Joint Sensing, Communication, and Multi-tenant Edge AI for Cooperative Perception Systems
RINGS:为协作感知系统提供联合感知、通信和多租户边缘人工智能
  • 批准号:
    2148353
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Reconfiguration and Cooperative Control for Multi-Agent Networks
多智能体网络的重构与协作控制
  • 批准号:
    RGPIN-2017-06964
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Learning to Secure Cooperative Multi-Agent Learning Systems: Advanced Attacks and Robust Defenses
职业:学习保护协作多代理学习系统:高级攻击和强大的防御
  • 批准号:
    2146548
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了