CAREER: Managing uncertainties in renewable powered grids
职业:管理可再生能源电网的不确定性
基本信息
- 批准号:2338383
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2029-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF CAREER project aims to develop algorithms to manage the inherent uncertainties of renewable generation in order to provide reliable and least cost operations of electric power systems. The project will bring transformative change to utility control rooms by fully incorporating renewable uncertainties into online assessment of instability risks and decision-making of resource dispatch. This will be achieved by developing a novel computational framework that combines physics-based power grid modeling, real-time sensor measurement, and pseudo measurement from numerical weather predictions with advanced machine learning and data analytics to achieve higher computation efficiency and accuracy required to manage renewable uncertainties in grid operations. The intellectual merits of the project include novel methodologies to enhance situational awareness of renewable generation, assess transient instability risks, and coordinate resource dispatch to mitigate the impact of renewable uncertainties. The broader impacts of the project include innovations to fundamental theories of uncertainty management in renewable energy powered grids and improvements to the workforce pipeline enabling the smooth transition to 100% decarbonized electricity systems. Current state of the art technologies, i.e., lack of situational awareness of offshore wind generation, determining transmission stability margin via off-line studies for online applications, and static/dynamic (capacity) reserve, do not adequately capture the new features of a renewable powered grid with high uncertainties. This project will bridge these gaps by 1) enhancing system operators' situational awareness through providing a new framework to fuse physics-based weather prediction and deep-learning methodologies for improved offshore wind generation forecasting; 2) enabling real-time transient instability risk assessment by developing a computational data analytic algorithm to approximate system dynamics; and 3) redesigning the operating reserve via the dynamic energy reserve technology to incorporate spatially and temporally correlated renewable uncertainties. These fundamental theories and technologies move the science of risk management in the utility control room from offline study with deterministic practices to data-driven, risk-aware online solutions, leading to informed decision-making and prompt mitigation actions by system operators to prevent cascading events.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个NSF CAREER项目旨在开发算法来管理可再生能源发电的固有不确定性,以提供可靠和最低成本的电力系统运营。该项目将通过将可再生能源的不确定性充分纳入不稳定风险的在线评估和资源调度决策,为公用事业控制室带来变革性变化。这将通过开发一种新的计算框架来实现,该框架将基于物理的电网建模,实时传感器测量和来自数值天气预测的伪测量与先进的机器学习和数据分析相结合,以实现管理电网运营中可再生不确定性所需的更高计算效率和准确性。该项目的智力优势包括新的方法,以提高可再生能源发电的情况意识,评估瞬态不稳定风险,并协调资源调度,以减轻可再生能源的不确定性的影响。该项目的更广泛影响包括对可再生能源电网不确定性管理基本理论的创新,以及对劳动力管道的改进,使其能够顺利过渡到100%脱碳电力系统。现有技术水平,即,缺乏对海上风力发电的态势感知、通过在线应用的离线研究来确定传输稳定性裕度以及静态/动态(容量)储备,不能充分捕捉具有高不确定性的可再生电网的新特征。该项目将通过以下方式弥合这些差距:1)通过提供一个新的框架来融合基于物理的天气预测和深度学习方法,以改善海上风力发电预测,从而提高系统运营商的态势感知能力; 2)通过开发计算数据分析算法来近似系统动态,从而实现实时瞬态不稳定风险评估;以及3)通过动态能量储备技术重新设计操作储备,以纳入空间和时间相关的可再生不确定性。这些基础理论和技术将公用事业控制室的风险管理科学从具有确定性实践的离线研究转移到数据驱动的风险感知在线解决方案,从而做出明智的决定-该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估,被认为值得支持。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yazhou Jiang其他文献
Powerless in the storm: Severe weather-driven power outages in New York State, 2017–2020
暴风雨中无能为力:2017-2020 年纽约州因严重天气原因停电
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nina M. Flores;Alexander J. Northrop;Vivian Do;Milo Gordon;Yazhou Jiang;Kara E. Rudolph;Diana Hernández;Joan A. Casey - 通讯作者:
Joan A. Casey
Combustion Simulation of 130KW Large Cylinder Natural Gas Heater with Intermediate Heat Carrier Medium
130KW大缸中间热载体天然气加热器燃烧模拟
- DOI:
10.1088/1755-1315/186/4/012075 - 发表时间:
2018-10 - 期刊:
- 影响因子:0
- 作者:
Yazhou Jiang;Yun Guo - 通讯作者:
Yun Guo
Data-Driven Fast Uncertainty Assessment of Distribution Systems With Correlated EV Charging Demand and Renewable Generation
对具有相关电动汽车充电需求和可再生能源发电的配电系统进行数据驱动的快速不确定性评估
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8.8
- 作者:
Yazhou Jiang;T. Ortmeyer;M. Fan - 通讯作者:
M. Fan
Seasonal changes in the demersal nekton community off the Changjiang River estuary
- DOI:
10.1007/s00343-014-3097-3 - 发表时间:
2014-03-01 - 期刊:
- 影响因子:1.300
- 作者:
Yazhou Jiang;Jianzhong Ling;Jiansheng Li;Linlin Yang;Shengfa Li - 通讯作者:
Shengfa Li
Cyber Physical Grid-Interactive Distributed Energy Resources Control for VPP Dispatch and Regulation
用于 VPP 调度和调节的网络物理网格交互式分布式能源控制
- DOI:
10.1109/isgteurope52324.2021.9640131 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Houchao Gan;Jianhua Zhang;Jing Wang;D. Hou;Yazhou Jiang;D. Gao - 通讯作者:
D. Gao
Yazhou Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yazhou Jiang', 18)}}的其他基金
REU Site: Summer Research Experience on Resilient Carbon-Free U.S. Electric Power Systems
REU 网站:美国弹性无碳电力系统夏季研究经验
- 批准号:
2150238 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Development of inexact factorial optimization approaches for managing compound environmental risks under interactive uncertainties
开发不精确因子优化方法来管理交互不确定性下的复合环境风险
- 批准号:
RGPIN-2014-04413 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Sustainable Solutions for Managing Compound Flood Risks under Future Uncertainties: The Case of Shanghai City and the Yangtze River Delta Region
未来不确定性下复合洪水风险管理的可持续解决方案:以上海市和长三角地区为例
- 批准号:
EP/R034214/1 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Development of inexact factorial optimization approaches for managing compound environmental risks under interactive uncertainties
开发不精确因子优化方法来管理交互不确定性下的复合环境风险
- 批准号:
RGPIN-2014-04413 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Development of inexact factorial optimization approaches for managing compound environmental risks under interactive uncertainties
开发不精确因子优化方法来管理交互不确定性下的复合环境风险
- 批准号:
RGPIN-2014-04413 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Renewables: Market Mechanism for Managing Uncertainties Caused by High Levels of Renewable Generation
EAGER:可再生能源:管理高水平可再生能源发电引起的不确定性的市场机制
- 批准号:
1549937 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Development of inexact factorial optimization approaches for managing compound environmental risks under interactive uncertainties
开发不精确因子优化方法来管理交互不确定性下的复合环境风险
- 批准号:
RGPIN-2014-04413 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
MaRIUS: Managing the Risks, Impacts and Uncertainties of droughts and water Scarcity
MaRIUS:管理干旱和缺水的风险、影响和不确定性
- 批准号:
NE/L010186/1 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Development of inexact factorial optimization approaches for managing compound environmental risks under interactive uncertainties
开发不精确因子优化方法来管理交互不确定性下的复合环境风险
- 批准号:
RGPIN-2014-04413 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
MaRIUS: Managing the Risks, Impacts and Uncertainties of droughts and water Scarcity
MaRIUS:管理干旱和缺水的风险、影响和不确定性
- 批准号:
NE/L010208/1 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Research Grant
MaRIUS: Managing the Risks, Impacts and Uncertainties of droughts and water Scarcity
MaRIUS:管理干旱和缺水的风险、影响和不确定性
- 批准号:
NE/L010364/1 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Research Grant