RUI: Topology, Gauge Fields and Phase Coherence in the Transport Dynamics of Ultracold Atoms
RUI:超冷原子输运动力学中的拓扑、规范场和相位相干性
基本信息
- 批准号:1313871
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Confined ultracold atoms provide the unique capability to create designer systems that can be tailored to provide direct access to quantum mechanical properties that may be otherwise obscured. An important class of such properties is topological in nature in the sense that they are primarily defined by the structure of the abstract space of their defining parameters. Since topology is the most general description of any structure, real or abstract, such features can be used to find connections among phenomena that may seem unrelated, and thereby provide powerful insights into them all. The goal of this research is to analyze several such phenomena, some newly proposed here and some well-known but not well-understood, comparatively from a topological perspective. The method will be to recast them as generalized transport problems, tracking how the system and its parameters evolve in time, which will then be related to dynamical experiments with cold atoms. The study will involve the intrinsic quantum characteristic of phase in the context of creating gauge fields associated with varying local phase, and coherence effects associated with quantum systems. Whether the topological properties survive the loss of phase coherence in the presence of nonlinearity or in taking the classical physics limit is an essential fundamental physics question that will be examined for all mechanisms studied.The outcome of this study has potential for applications in creating novel materials and devices that take advantage of the newly available topological and phase properties, as well as, for significantly broadening our understanding of fundamental physics, since many of these issues have relevance across all areas of physics. Some aspects of the research have technological applications potential for improved sensors and gyroscopes, and in the emerging field of atomtronics, the atomic analog of electronics. A high priority of the research will be to engage multiple undergraduate students at a public university attended by many first generation and at-risk students who often do not get the opportunity to participate in scientific research. The goal is to continue and expand on the success of a prior grant to attract and channel such domestic students into careers in science and technology.
受限制的超冷原子提供了独特的能力来创建设计系统,可以定制,以提供直接访问量子力学特性,否则可能会被掩盖。这类性质中有一类重要的性质是拓扑性质,因为它们主要是由它们的定义参数的抽象空间的结构来定义的。由于拓扑学是对任何结构(无论是真实的还是抽象的)的最一般的描述,因此这些特征可以用于发现看似不相关的现象之间的联系,从而提供对所有这些现象的强大见解。本研究的目的是从拓扑学的角度比较分析几种这样的现象,其中一些是新提出的,一些是已知的但尚未被很好地理解的。方法是将它们重新定义为广义输运问题,跟踪系统及其参数如何随时间演变,然后将其与冷原子的动力学实验联系起来。本研究将涉及在创造与不同局域相相关的规范场的背景下相的固有量子特性,以及与量子系统相关的相干效应。在非线性或经典物理极限下,拓扑性质是否能在相位相干性丧失的情况下存活,是所有研究机制都要考察的基本物理问题。这项研究的结果有可能应用于创造利用新可用的拓扑和相特性的新型材料和器件,以及显着拓宽我们对基础物理学的理解,因为这些问题中的许多问题与物理学的所有领域相关。该研究的某些方面具有改进传感器和陀螺仪的技术应用潜力,以及在新兴的原子电子学领域,电子的原子模拟。这项研究的重中之重将是吸引公立大学的多名本科生,这些大学有许多第一代和处于危险中的学生,他们往往没有机会参与科学研究。其目标是继续并扩大先前拨款的成功,以吸引和引导这些国内学生从事科学和技术事业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kunal Das其他文献
Gastritis in Northeast India and North India: A regional comparison of prevalence and associated risk factors
印度东北部和印度北部的胃炎:患病率和相关危险因素的区域比较
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.4
- 作者:
Akshita Mathur;Valentina Gehlot;Shweta Mahant;Sangitanjan Dutta;A. Mukhopadhyay;Kunal Das;Rajashree Das - 通讯作者:
Rajashree Das
Tests of mutual independence among several random vectors using univariate and multivariate ranks of nearest neighbours
使用最近邻的单变量和多元等级测试几个随机向量之间的相互独立性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Angshuman Roy;Kunal Das;Soham Sarkar;A. Ghosh - 通讯作者:
A. Ghosh
Manual red cell exchange (RBCXm) in acute sickle cell crisis: A cost effective modality in resource limited settings.
急性镰状细胞危机中的手动红细胞交换(RBCXm):资源有限环境中的一种具有成本效益的方式。
- DOI:
10.1016/j.tracli.2024.01.006 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Y. Dhiman;Basanta Khatiwada;Kunal Das;M. Raturi;Dushyant Singh Gaur - 通讯作者:
Dushyant Singh Gaur
a class=Blue view_title target=_blankPlasticizing Effects of Epoxidized Sun Flower Oil on Biodegradable Polylactide Films: a Comparative Study/a
环氧化葵花油对生物可降解聚丙交酯薄膜的增塑作用的比较研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Nana Prempeh;Jinlei Li;Dagang Liu;Kunal Das;Sonakshi Maiti;Ying Zhang - 通讯作者:
Ying Zhang
Morphological, Mechanical and Thermal Study of ZnO Nanoparticle Reinforced Chitosan Based Transparent Biocomposite Films
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:
- 作者:
Kunal Das;Sonakshi Maiti;Dagang Liu; - 通讯作者:
Kunal Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kunal Das', 18)}}的其他基金
RUI: Quantum Correlations and Dynamics of Ring Sensors and Simulators
RUI:环形传感器和模拟器的量子相关性和动力学
- 批准号:
2309025 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
RUI: Quantum Sensing and Simulation with Ultracold Atoms in Ring Lattices
RUI:环晶格中超冷原子的量子传感和模拟
- 批准号:
2011767 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
RUI: Ultracold Atoms in Ring-Shaped Lattices
RUI:环形晶格中的超冷原子
- 批准号:
1707878 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
RUI: Quantum Transport Dynamics with Ultracold Atoms: Localized versus Extended States
RUI:超冷原子的量子输运动力学:局域态与扩展态
- 批准号:
0970012 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Gauge theory and low dimensional topology
规范理论和低维拓扑
- 批准号:
RGPIN-2016-05404 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Gauge theory and low dimensional topology
规范理论和低维拓扑
- 批准号:
RGPIN-2016-05404 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Gauge Theory, Floer Homology, and Topology
规范理论、弗洛尔同调和拓扑
- 批准号:
1830070 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Applications of Gauge Theory and Floer Homology to Low-Dimensional Topology
规范理论和Floer同调在低维拓扑中的应用
- 批准号:
1811111 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
The topology of gauge groups and current groups for 3-manifolds
3 歧管的仪表组和电流组的拓扑
- 批准号:
1985336 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Studentship
Gauge theory and low dimensional topology
规范理论和低维拓扑
- 批准号:
RGPIN-2016-05404 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Gauge theory and low dimensional topology
规范理论和低维拓扑
- 批准号:
RGPIN-2016-05404 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Quantum topology and invariants of knots and 3-manifolds related to gauge theory
量子拓扑以及与规范理论相关的结和三流形的不变量
- 批准号:
16K13754 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research