RUI: Ultracold Atoms in Ring-Shaped Lattices

RUI:环形晶格中的超冷原子

基本信息

  • 批准号:
    1707878
  • 负责人:
  • 金额:
    $ 13.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Upheavals of familiar technologies are expected in coming years due to the dramatically enhanced control of atomic, molecular and photonic systems. Among these anticipated revolutions is that in sensor technology, affecting a wide array of devices regularly used to detect and measure everything from electric currents, magnetic and gravitational fields, and light intensities, to name a few examples. The key element driving these developments is quantum entanglement, the strange correlations between observable properties of even widely-separated quantum systems. While entanglement is ubiquitous in quantum systems, it is also extremely delicate, and can be altered or spoiled by interactions of the quantum system with its environment. This delicacy is precisely what makes exquisitely controlled quantum systems the source of potentially revolutionary sensor technology. This project concerns simple sensors formed by entangled ultracold atoms confined in ring-shaped traps. The ring-shape allows for the interference of counter-propagating matter waves, forming a kind of interferometer which has exquisite sensitivity to interactions between the atoms. Additional applications of the results to quantum information processing and to new quantum materials will also be explored. The PI will actively train and involve numerous undergraduate students in physics research at a low cost university, and expand on success under prior grants to leverage this experience to channel students into STEM career paths, including many from under-represented demographics. Specifically, this project will conduct a comprehensive study of phenomena realizable with ultracold atoms trapped in lattices with a global topology that is multiply-connected, such as rings, cylinders or tori. The non-trivial topology naturally introduces periodic and twisted boundary conditions with the inclusion of effective flux via gauge fields or rotation, and reveals coherent and non-local features of quantum states. Within this general context, a broad range of topics will be examined. Models with ring-shaped geometry have played a crucial role in understanding the influences of topology and gauge freedoms in non-relativistic physics. This research will develop and extend those models for viable implementation with cold atoms to probe scenarios often inaccessible when such models were conceived. The phenomena to be so studied will include artificial gauge fields, quantum Hall effect, anyon physics, quantum pumps, Hofstadter model, and Aharonov-Bohm and geometric phase effects. Spin-squeezing, that can bypass uncertainty limits, and nonlinear dynamics will be examined in the novel context of counter-circulating collective modes of atoms sharing the same physical space. Where possible, the phenomena will be examined dynamically with evolution in time and space, noting that time can add or substitute for other degrees of freedom. Treating rings as artificial atoms, counterparts will be established in external degrees of freedom for phenomena usually associated with internal ones.
由于对原子、分子和光子系统的控制显著增强,预计未来几年熟悉的技术将发生剧变。在这些预期的革命中,传感器技术将影响到广泛的设备,这些设备通常用于检测和测量电流、磁场和引力场、光强度等一切,仅举几个例子。推动这些发展的关键因素是量子纠缠,即即使是相隔很远的量子系统的可观察属性之间的奇怪关联。虽然纠缠在量子系统中无处不在,但它也非常微妙,并且可以被量子系统与其环境的相互作用所改变或破坏。正是这种微妙之处,使得精确控制的量子系统成为潜在的革命性传感器技术的源泉。这个项目涉及的是由束缚在环形陷阱中的纠缠超冷原子形成的简单传感器。环形结构允许反向传播的物质波干涉,形成一种对原子间相互作用具有高度灵敏度的干涉仪。研究结果在量子信息处理和新型量子材料方面的其他应用也将被探索。该项目将在一所低成本大学积极培训和吸引众多本科生参与物理研究,并扩大在先前资助下取得的成功,利用这一经验引导学生进入STEM职业道路,包括许多来自代表性不足的人口统计数据。具体来说,该项目将对被困在具有多重连接的全局拓扑结构的晶格中的超冷原子所能实现的现象进行全面研究,例如环、圆柱体或环面。非平凡拓扑通过规范场或旋转引入了包含有效通量的周期和扭曲边界条件,并揭示了量子态的相干和非局域特征。在这一总体背景下,将审查范围广泛的主题。环形几何模型在理解非相对论物理中拓扑和规范自由的影响方面起着至关重要的作用。这项研究将发展和扩展这些模型,使其在冷原子中可行地实现,以探测当这些模型被设想时通常无法实现的场景。所研究的现象将包括人工规范场、量子霍尔效应、任意子物理、量子泵、霍夫施塔特模型、阿哈罗诺夫-玻姆和几何相位效应。可以绕过不确定性限制的自旋压缩和非线性动力学将在共享相同物理空间的原子的反循环集体模式的新背景下进行检查。在可能的情况下,这些现象将随着时间和空间的演变而动态地加以检验,并注意到时间可以增加或替代其他自由度。将环视为人造原子,对于通常与内部自由度有关的现象,将在外部自由度中建立对应的环。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthetic Gauge Structures in Real Space in a Ring lattice
环格子实空间中的合成规范结构
  • DOI:
    10.1038/s41598-019-50474-9
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Das, Kunal K.;Gajdacz, Miroslav
  • 通讯作者:
    Gajdacz, Miroslav
Significance and Sensor Utility of Phase in Quantum Localization Transition
相位在量子局域化跃迁中的意义和传感器效用
  • DOI:
    10.1103/physrevlett.125.070401
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Das, Kunal K.
  • 通讯作者:
    Das, Kunal K.
Rotation-sensitive quench and revival of coherent oscillations in a ring lattice
环晶格中旋转敏感的相干振荡的猝灭和恢复
  • DOI:
    10.1103/physreva.103.013322
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brooks, Caelan;Brattley, Allison;Das, Kunal K.
  • 通讯作者:
    Das, Kunal K.
Dynamical resonances and stepped current in an attractive quantum pump
有吸引力的量子泵中的动态共振和阶跃电流
  • DOI:
    10.1103/physreva.97.033614
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Das, Kunal K.;Garner, Joshua;Ruppert, Kevin
  • 通讯作者:
    Ruppert, Kevin
Realizing the Harper model with ultracold atoms in a ring lattice
用环晶格中的超冷原子实现哈珀模型
  • DOI:
    10.1103/physreva.99.013604
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Das, Kunal K.;Christ, Jacob
  • 通讯作者:
    Christ, Jacob
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kunal Das其他文献

Gastritis in Northeast India and North India: A regional comparison of prevalence and associated risk factors
印度东北部和印度北部的胃炎:患病率和相关危险因素的区域比较
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Akshita Mathur;Valentina Gehlot;Shweta Mahant;Sangitanjan Dutta;A. Mukhopadhyay;Kunal Das;Rajashree Das
  • 通讯作者:
    Rajashree Das
Tests of mutual independence among several random vectors using univariate and multivariate ranks of nearest neighbours
使用最近邻的单变量和多元等级测试几个随机向量之间的相互独立性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Angshuman Roy;Kunal Das;Soham Sarkar;A. Ghosh
  • 通讯作者:
    A. Ghosh
Manual red cell exchange (RBCXm) in acute sickle cell crisis: A cost effective modality in resource limited settings.
急性镰状细胞危机中的手动红细胞交换(RBCXm):资源有限环境中的一种具有成本效益的方式。
a class=Blue view_title target=_blankPlasticizing Effects of Epoxidized Sun Flower Oil on Biodegradable Polylactide Films: a Comparative Study/a
环氧化葵花油对生物可降解聚丙交酯薄膜的增塑作用的比较研究
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nana Prempeh;Jinlei Li;Dagang Liu;Kunal Das;Sonakshi Maiti;Ying Zhang
  • 通讯作者:
    Ying Zhang

Kunal Das的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kunal Das', 18)}}的其他基金

RUI: Quantum Correlations and Dynamics of Ring Sensors and Simulators
RUI:环形传感器和模拟器的量子相关性和动力学
  • 批准号:
    2309025
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
RUI: Quantum Sensing and Simulation with Ultracold Atoms in Ring Lattices
RUI:环晶格中超冷原子的量子传感和模拟
  • 批准号:
    2011767
  • 财政年份:
    2020
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
RUI: Topology, Gauge Fields and Phase Coherence in the Transport Dynamics of Ultracold Atoms
RUI:超冷原子输运动力学中的拓扑、规范场和相位相干性
  • 批准号:
    1313871
  • 财政年份:
    2013
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
RUI: Quantum Transport Dynamics with Ultracold Atoms: Localized versus Extended States
RUI:超冷原子的量子输运动力学:局域态与扩展态
  • 批准号:
    0970012
  • 财政年份:
    2010
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Non-Hermitian Physics in Ultracold Atoms and Photonics
超冷原子和光子学中的非厄米物理
  • 批准号:
    2409943
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Atom Interferometry with Ultracold Strontium Atoms
超冷锶原子的原子干涉测量
  • 批准号:
    2885950
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Studentship
RUI: Quantum State Control for Ultracold Atoms
RUI:超冷原子的量子态控制
  • 批准号:
    2309331
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Correlation and Dynamics of Ultracold Atoms in Optical Tweezer Arrays
光镊阵列中超冷原子的相关性和动力学
  • 批准号:
    2308617
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Center: Center for Ultracold Atoms
中心:超冷原子中心
  • 批准号:
    2317134
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Cooperative Agreement
Many Body out of equilibrium quantum dynamics in Ultracold Atoms
超冷原子中许多物体失去平衡量子动力​​学
  • 批准号:
    2740290
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Studentship
Nuclear T-violation searches using ultracold atoms and molecules
使用超冷原子和分子进行核 T 违规搜索
  • 批准号:
    RGPAS-2021-00001
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Quantum measurements, quantum nonlinear optics, & quantum foundations using entangled photons and ultracold & Rydberg atoms
量子测量、量子非线性光学、
  • 批准号:
    RGPIN-2020-05767
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Discovery Grants Program - Individual
Nuclear T-violation searches using ultracold atoms and molecules
使用超冷原子和分子进行核 T 违规搜索
  • 批准号:
    SAPIN-2021-00025
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Quantum simulation with ultracold atoms in dynamically varying light potentials
动态变化光势下超冷原子的量子模拟
  • 批准号:
    2748583
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了