HCC: Large: Social-Computational Support of Civic Engagement in Public Policymaking
HCC:大:公民参与公共政策制定的社会计算支持
基本信息
- 批准号:1314778
- 负责人:
- 金额:$ 221.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching goals of this work are to understand and to provide socio-computational support for improving the entire cycle of technology-enabled civic engagement: (1) recruitment of people with a stake in the issues; (2) deliberative discussion in which they learn about the policy issues, engage with each other, voice questions and recount experiences; and (3) consensus building in which participants move toward collaborative content-creation, summarization of the knowledge that has emerged in discussion and the development of agreement around key points. In practice, efforts to use social media for citizen policy consultations often fell far short of their knowledge-generating and democracy-reinforcing goals. There thus is a crucial need to discover how to design civic engagement spaces that leverage the potential of social media, so that they support not simply more participation but rather better participation that will benefit both the policymakers seeking input and the citizens who participate in the discussion. To achieve this goal, the project integrates computer science research on natural language learning for social-computational systems, human-computer interaction research on online communities, social media design, and social science research on motivation and individual and group deliberative processes. The research will advance behavioral science understanding of the relationship between individual characteristics and successful e-deliberation; the communicative processes that characterize successful e-deliberation; and the group processes and moderator behaviors that promote a shift from open discussion to consensus building. It will advance the state-of-the-art in natural language processing by developing joint human-computer text analysis techniques to (1) promote on-line civic engagement in policy discussions and (2) facilitate deliberative moderation in this collaborative online setting. It will add to human-computer interaction by advancing recommender systems, online communities, and social media research to support mentoring activities and engagement with alternate points of view. Finally, it will extend scientific understanding of how to motivate and support broader, better citizen participation in public policymaking.The work will have at least five broader impacts: (1) increase understanding of, and infrastructure for, e-participation in policy-making, and provide annotated datasets of civic deliberations for use by other researchers; (2) enhance education through graduate and undergraduate mentoring and development of a new interdisciplinary course on Online Civic Engagement; (3) promote STEM education diversity with programs for middle and high school girls; (4) provide community and government outreach activities; (5) benefit society by improved civic engagement in policymaking in general.
这项工作的总体目标是了解并提供社会计算支持,以改善技术支持的公民参与的整个周期:(1)招募与问题有利害关系的人;(2)审议性讨论,他们在其中了解政策问题,相互接触,提出问题并叙述经验;以及(3)建立共识,参与者在此过程中进行合作内容创作,总结讨论中出现的知识,并围绕关键点达成一致。在实践中,利用社交媒体进行公民政策协商的努力往往远远达不到其创造知识和加强民主的目标。因此,迫切需要发现如何设计公民参与空间,利用社交媒体的潜力,使其不仅支持更多的参与,而且支持更好的参与,这将有利于寻求投入的决策者和参与讨论的公民。为了实现这一目标,该项目整合了社会计算系统的自然语言学习的计算机科学研究,在线社区的人机交互研究,社交媒体设计,以及动机和个人和团体审议过程的社会科学研究。这项研究将推进行为科学对个人特征与成功电子审议之间关系的理解;成功电子审议的沟通过程;以及促进从公开讨论到建立共识转变的群体过程和主持人行为。它将通过开发联合人机文本分析技术来推进自然语言处理的最新技术,以(1)促进公民在线参与政策讨论,(2)促进这种协作在线环境中的审议适度。它将通过推进推荐系统、在线社区和社交媒体研究来增加人机交互,以支持指导活动和与其他观点的互动。最后,这项工作将扩大对如何激励和支持公民更广泛、更好地参与公共决策的科学理解,这项工作将至少产生五个更广泛的影响:(1)增加对电子参与决策的理解和基础设施,并提供附加说明的公民审议数据集,供其他研究人员使用;(2)通过研究生和本科生辅导以及开发新的跨学科在线公民参与课程来加强教育;(3)通过针对初中和高中女生的计划促进STEM教育的多样性;(4)提供社区和政府外联活动;(5)通过改善公民参与一般决策造福社会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claire Cardie其他文献
BeSt: The Belief and Sentiment Corpus
最佳:信念和情感语料库
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jennifer Tracey;Owen Rambow;Michael Arrigo;Claire Cardie;Adam Dalton;H. Dang;Mona T. Diab;Bonnie Dorr;Louise Guthrie;M. Markowska;S. Muresan;Vinodkumar Prabhakaran;Samira Shaikh;T. Strzalkowski;Janyce Wiebe - 通讯作者:
Janyce Wiebe
Using natural language processing to improve eRulemaking: project highlight
使用自然语言处理改进电子规则制定:项目亮点
- DOI:
10.1145/1146598.1146651 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Claire Cardie;Cynthia Farina;Thomas Bruce - 通讯作者:
Thomas Bruce
Embedded machine learning systems for natural language processing: a general framework
- DOI:
10.1007/3-540-60925-3_56 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Claire Cardie - 通讯作者:
Claire Cardie
Using Cognitive Biases to Guide Feature Set Selection
使用认知偏差来指导特征集选择
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Claire Cardie - 通讯作者:
Claire Cardie
Understanding the Effect of Gender and Stance in Opinion Expression in Debates on “Abortion”
了解性别和立场对“堕胎”辩论中意见表达的影响
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Esin Durmus;Claire Cardie - 通讯作者:
Claire Cardie
Claire Cardie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claire Cardie', 18)}}的其他基金
RI: Small: Collaborative Research: Computational Methods for Argument Mining: Extraction, Aggregation, and Generation
RI:小型:协作研究:参数挖掘的计算方法:提取、聚合和生成
- 批准号:
1815455 - 财政年份:2018
- 资助金额:
$ 221.59万 - 项目类别:
Standard Grant
SoCS: Collaborative Research: Leveraging Others' Insights to Improve Collaborative Analysis
SoCS:协作研究:利用他人的见解来改进协作分析
- 批准号:
0968450 - 财政年份:2010
- 资助金额:
$ 221.59万 - 项目类别:
Standard Grant
Natural Language Processing Support for eRulemaking
对电子规则制定的自然语言处理支持
- 批准号:
0535099 - 财政年份:2005
- 资助金额:
$ 221.59万 - 项目类别:
Continuing Grant
Reducing the Corpus Annotation Bottleneck for Natural Language Learning
减少自然语言学习的语料库标注瓶颈
- 批准号:
0208028 - 财政年份:2002
- 资助金额:
$ 221.59万 - 项目类别:
Continuing Grant
POWRE-Integrating Natural Language Processing and Information Retrieval for Intelligent Text-Processing
POWRE-集成自然语言处理和信息检索以实现智能文本处理
- 批准号:
0074896 - 财政年份:2000
- 资助金额:
$ 221.59万 - 项目类别:
Standard Grant
Knowledge Acquisition for Natural Language Understanding
自然语言理解的知识获取
- 批准号:
9624639 - 财政年份:1996
- 资助金额:
$ 221.59万 - 项目类别:
Continuing Grant
Computational Aspects of Cognitive Science Focus Area: Human Computation
认知科学的计算方面重点领域:人类计算
- 批准号:
9454149 - 财政年份:1994
- 资助金额:
$ 221.59万 - 项目类别:
Continuing Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Randomized controlled trials in large-scale social survey: Implementation of mixed-mode design and multiple informants
大规模社会调查中的随机对照试验:混合模式设计和多受访者的实施
- 批准号:
23H00890 - 财政年份:2023
- 资助金额:
$ 221.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Social Tipping Points and Norm Change in Large-scale Laboratory Experiments
大规模实验室实验中的社会临界点和规范变化
- 批准号:
2242443 - 财政年份:2023
- 资助金额:
$ 221.59万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Social perception and body awareness in large-brained mammals
博士论文研究:大脑哺乳动物的社会感知和身体意识
- 批准号:
2316955 - 财政年份:2023
- 资助金额:
$ 221.59万 - 项目类别:
Standard Grant
Using Large-Scale Network Data to Measure Social Returns and Improve Targeting of Crime-Reduction Interventions
使用大规模网络数据衡量社会回报并提高减少犯罪干预措施的针对性
- 批准号:
2242453 - 财政年份:2023
- 资助金额:
$ 221.59万 - 项目类别:
Standard Grant
HNDS-I: Pushkin: Enabling large-scale citizen science data collection for the social, behavioral, and economic sciences
HNDS-I:普希金:为社会、行为和经济科学实现大规模公民科学数据收集
- 批准号:
2318474 - 财政年份:2023
- 资助金额:
$ 221.59万 - 项目类别:
Standard Grant
Social scientific research using large-scale surveys to understand and resolve social disparities, inequalities, and divisions
社会科学研究利用大规模调查来了解和解决社会差距、不平等和分裂
- 批准号:
23H05402 - 财政年份:2023
- 资助金额:
$ 221.59万 - 项目类别:
Grant-in-Aid for Specially Promoted Research
Large Database to Explore Rise of Social Complexity
大型数据库探索社会复杂性的上升
- 批准号:
2200926 - 财政年份:2022
- 资助金额:
$ 221.59万 - 项目类别:
Standard Grant
RAPID: Documenting and understanding large-scale migrations between social media platforms
RAPID:记录和理解社交媒体平台之间的大规模迁移
- 批准号:
2309485 - 财政年份:2022
- 资助金额:
$ 221.59万 - 项目类别:
Standard Grant
Data-centric Decision Supports for Large-scale Social Network Management
以数据为中心的大规模社交网络管理决策支持
- 批准号:
RGPIN-2017-05667 - 财政年份:2022
- 资助金额:
$ 221.59万 - 项目类别:
Discovery Grants Program - Individual
Examining Social Ecological and Network Factors to Assess Epidemiological Risk in a Large National Cohort of Cisgender Women
检查社会生态和网络因素以评估全国大型顺性别女性群体的流行病学风险
- 批准号:
10686266 - 财政年份:2022
- 资助金额:
$ 221.59万 - 项目类别: