Knowledge Acquisition for Natural Language Understanding
自然语言理解的知识获取
基本信息
- 批准号:9624639
- 负责人:
- 金额:$ 21.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-04-01 至 2000-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A major obstacle to building robust systems that can read, summarize, and extract information from text is the need for large amounts of linguistic knowledge to handle the myriad syntactic, semantic, and pragmatic ambiguities that pervade virtually all aspects of text analysis. The objective of this research is to address this knowledge engineering bottleneck for natural language processing (NLP) systems. The work extends a general knowledge acquisition framework that allows an NLP system to bootstrap its own knowledge bases directly from text using standard inductive machine learning techniques in conjunction with an annotated corpus and robust sentence analysis. In particular, the framework is being extended to handle additional problems in lexical and structural ambiguity resolution and is being evaluated using Penn Treebank data within the context of a larger NLP task. The work is of both theoretical and practical significance. First, the research will begin to determine the conditions under which machine learning techniques can be expected to offer a cost-effective approach to knowledge acquisition for NLP systems, especially in comparison to existing statistical techniques. Second, the work will expand the current system into an integrated tool that uses machine learning techniques to guide NLP system development.
构建能够从文本中读取、总结和提取信息的健壮系统的一个主要障碍是需要大量的语言学知识来处理大量的句法、语义和语用歧义,这些歧义几乎遍布文本分析的各个方面。本研究的目的是解决自然语言处理(NLP)系统的知识工程瓶颈。这项工作扩展了一个通用的知识获取框架,允许NLP系统使用标准的归纳机器学习技术结合注释语料库和强大的句子分析直接从文本中引导自己的知识库。 特别是,该框架正在扩展到处理词汇和结构歧义解决方面的其他问题,并正在使用Penn Treebank数据在一个更大的NLP任务的背景下进行评估。这一工作具有重要的理论意义和实践意义。首先,研究将开始确定机器学习技术可以预期为NLP系统提供具有成本效益的知识获取方法的条件,特别是与现有的统计技术相比。 其次,这项工作将把当前的系统扩展成一个集成工具,使用机器学习技术来指导NLP系统开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claire Cardie其他文献
BeSt: The Belief and Sentiment Corpus
最佳:信念和情感语料库
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jennifer Tracey;Owen Rambow;Michael Arrigo;Claire Cardie;Adam Dalton;H. Dang;Mona T. Diab;Bonnie Dorr;Louise Guthrie;M. Markowska;S. Muresan;Vinodkumar Prabhakaran;Samira Shaikh;T. Strzalkowski;Janyce Wiebe - 通讯作者:
Janyce Wiebe
Using natural language processing to improve eRulemaking: project highlight
使用自然语言处理改进电子规则制定:项目亮点
- DOI:
10.1145/1146598.1146651 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Claire Cardie;Cynthia Farina;Thomas Bruce - 通讯作者:
Thomas Bruce
Embedded machine learning systems for natural language processing: a general framework
- DOI:
10.1007/3-540-60925-3_56 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Claire Cardie - 通讯作者:
Claire Cardie
Using Cognitive Biases to Guide Feature Set Selection
使用认知偏差来指导特征集选择
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Claire Cardie - 通讯作者:
Claire Cardie
Understanding the Effect of Gender and Stance in Opinion Expression in Debates on “Abortion”
了解性别和立场对“堕胎”辩论中意见表达的影响
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Esin Durmus;Claire Cardie - 通讯作者:
Claire Cardie
Claire Cardie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claire Cardie', 18)}}的其他基金
RI: Small: Collaborative Research: Computational Methods for Argument Mining: Extraction, Aggregation, and Generation
RI:小型:协作研究:参数挖掘的计算方法:提取、聚合和生成
- 批准号:
1815455 - 财政年份:2018
- 资助金额:
$ 21.25万 - 项目类别:
Standard Grant
HCC: Large: Social-Computational Support of Civic Engagement in Public Policymaking
HCC:大:公民参与公共政策制定的社会计算支持
- 批准号:
1314778 - 财政年份:2013
- 资助金额:
$ 21.25万 - 项目类别:
Standard Grant
SoCS: Collaborative Research: Leveraging Others' Insights to Improve Collaborative Analysis
SoCS:协作研究:利用他人的见解来改进协作分析
- 批准号:
0968450 - 财政年份:2010
- 资助金额:
$ 21.25万 - 项目类别:
Standard Grant
Natural Language Processing Support for eRulemaking
对电子规则制定的自然语言处理支持
- 批准号:
0535099 - 财政年份:2005
- 资助金额:
$ 21.25万 - 项目类别:
Continuing Grant
Reducing the Corpus Annotation Bottleneck for Natural Language Learning
减少自然语言学习的语料库标注瓶颈
- 批准号:
0208028 - 财政年份:2002
- 资助金额:
$ 21.25万 - 项目类别:
Continuing Grant
POWRE-Integrating Natural Language Processing and Information Retrieval for Intelligent Text-Processing
POWRE-集成自然语言处理和信息检索以实现智能文本处理
- 批准号:
0074896 - 财政年份:2000
- 资助金额:
$ 21.25万 - 项目类别:
Standard Grant
Computational Aspects of Cognitive Science Focus Area: Human Computation
认知科学的计算方面重点领域:人类计算
- 批准号:
9454149 - 财政年份:1994
- 资助金额:
$ 21.25万 - 项目类别:
Continuing Grant
相似海外基金
The Early Acquisition of Korean Morphology based on Natural Speech Data
基于自然语音数据的韩语形态学的早期习得
- 批准号:
23K18686 - 财政年份:2023
- 资助金额:
$ 21.25万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
CAREER: Mapping and enhancing the acquisition of conceptual knowledge using behavior, neural signals, and natural language processing models
职业:使用行为、神经信号和自然语言处理模型来映射和增强概念知识的获取
- 批准号:
2145172 - 财政年份:2022
- 资助金额:
$ 21.25万 - 项目类别:
Continuing Grant
Acquisition of Research Equipment to advance the Geospatial Applications in Natural Science Laboratory - Precision Geomatics Extension (GAINS-PGE)
采购研究设备以推进自然科学实验室的地理空间应用 - 精密地理信息扩展(GAINS-PGE)
- 批准号:
2139062 - 财政年份:2022
- 资助金额:
$ 21.25万 - 项目类别:
Standard Grant
MRI: Acquisition of an Inductively Coupled Plasma-Mass Spectrometer for Quantitative Elemental Analysis of Natural and Engineered Materials
MRI:购买电感耦合等离子体质谱仪,用于天然和工程材料的定量元素分析
- 批准号:
2117614 - 财政年份:2021
- 资助金额:
$ 21.25万 - 项目类别:
Standard Grant
Development of SaaS Software for Talent Acquisition Using Natural Language Processing and Text Mining Algorithms
使用自然语言处理和文本挖掘算法开发人才招聘 SaaS 软件
- 批准号:
566995-2021 - 财政年份:2021
- 资助金额:
$ 21.25万 - 项目类别:
Applied Research and Development Grants - Level 1
MRI: Acquisition of a High Resolution LC/MS/MS to Enable Undergraduate Chemical and Biochemical Research Across Six Disciplines in the Natural and Applied Sciences at Hope College
MRI:购买高分辨率 LC/MS/MS,以支持希望学院自然科学和应用科学六个学科的本科生化学和生化研究
- 批准号:
2017708 - 财政年份:2020
- 资助金额:
$ 21.25万 - 项目类别:
Standard Grant
A study of teaching methods for children through natural English acquisition: From vocabulary and grammar acquisition
儿童自然英语习得教学方法研究:从词汇和语法习得
- 批准号:
20K13099 - 财政年份:2020
- 资助金额:
$ 21.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Natural Language Acquisition for Machines - Reinforcement Learning of Minimalist Grammars
机器自然语言习得——极简语法的强化学习
- 批准号:
432615119 - 财政年份:2020
- 资助金额:
$ 21.25万 - 项目类别:
Research Grants
MRI: Acquisition of a Scanning Electron Microscope for Research, Education, and Exhibit Programs at the Natural History Museum of Los Angeles County
MRI:购买扫描电子显微镜用于洛杉矶县自然历史博物馆的研究、教育和展览项目
- 批准号:
2018207 - 财政年份:2020
- 资助金额:
$ 21.25万 - 项目类别:
Standard Grant
MRI: Acquisition of an X-ray Computed Nanotomography system with in situ material testing to advance understanding of natural and engineered materials
MRI:购买 X 射线计算机纳米断层扫描系统,进行原位材料测试,以增进对天然和工程材料的了解
- 批准号:
1919818 - 财政年份:2019
- 资助金额:
$ 21.25万 - 项目类别:
Standard Grant