Numerical Algorithms as Dynamcal Systems - Structure Preservation, Convergence Theory, and Rediscretization

作为动态系统的数值算法 - 结构保持、收敛理论和重新离散化

基本信息

  • 批准号:
    1316779
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

The focus of the project is to improve iterative algorithms in numerical analysis by linking them to particular systems of differential equations. Thirty years ago, it was realized that the QR algorithm for calculating eigenvalues can be considered as a time-T map of the Toda lattice. This opens up the possibility of bringing the qualitative methods of dynamical systems to bear on the algorithm, and to potentially speed up the algorithm by more efficient discretizations. The crucial aspect of the Toda lattice is that it is a continuous conjugation that preserves upper Hessenberg form and therefore the eigenvalues. In recent research, the PI has achieved similar results with the calculation of the singular value decomposition by developing a Lotka-Volterra system that preserves bidiagonal structures, which has led to advances in computing the SVD. This project investigates other dynamical systems preserving symplectic and Hamiltonian structure, which are pivotal in many areas of applications. The ultimate goal is to investigate the connection between their geometric structures and existing numerical algorithms, to establish a rigorous mathematical theory on dynamical behaviors, and to develop possible structure-preserving re-discretizations to improve robustness, speed, and accuracy of iterations in numerical analysis. Structure-preserving dynamical systems are natural and ubiquitous. Conservation laws in the physical world and constrained mechanics in engineered systems are just two examples. Structure preservation is also imperative in computation because it makes possible more efficient algorithms, improves physical feasibility and interpretability, and is more robust in long-term behavior. The proposed research recasts numerical algorithms as differential systems that mimic the structure-preserving properties of the corresponding iterative schemes. Understanding the overall dynamics of the continuum system can shed light on the convergence properties of the related discrete counterparts, and can also contribute to the re-discretization of the continuum system into a new algorithm with better numerical properties. A wide range of applications stands to benefit from the study of properties and geometric structure of these systems, which essentially include all disciplines that entail structure preservation, including classical and quantum mechanics, model reduction, reversible systems, and molecular dynamics.
该项目的重点是通过将数值分析中的迭代算法与特定的微分方程系统联系起来来改进它们。30年前,人们认识到计算本征值的QR算法可以被认为是户田格的时间-T映射。这开辟了将动力系统的定性方法应用于算法的可能性,并可能通过更有效的离散化来加速算法。户田格的关键方面是,它是一个连续的共轭,保持上海森伯形式,因此,本征值。在最近的研究中,PI通过开发保持双对角结构的Lotka-Volterra系统,实现了奇异值分解计算的类似结果,这导致了SVD计算的进步。本计画研究其他保辛与保哈密尔顿结构的动力系统,这些系统在许多应用领域都是关键的。最终目标是研究它们的几何结构和现有的数值算法之间的联系,建立一个严格的数学理论的动力学行为,并开发可能的结构保持重新离散化,以提高鲁棒性,速度和精度的迭代数值分析。结构保持动力系统是自然的和普遍存在的。物理世界中的守恒定律和工程系统中的约束力学只是两个例子。结构保持在计算中也是必不可少的,因为它使更有效的算法成为可能,提高了物理可行性和可解释性,并且在长期行为中更鲁棒。拟议的研究重铸数值算法作为微分系统,模仿相应的迭代方案的结构保持性能。理解连续系统的整体动力学可以揭示相关离散对应物的收敛性质,并且还可以有助于将连续系统重新离散为具有更好数值性质的新算法。广泛的应用将受益于这些系统的性质和几何结构的研究,基本上包括所有需要结构保持的学科,包括经典和量子力学,模型简化,可逆系统和分子动力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moody Chu其他文献

On the Refinement of Cartan Decomposition: An Implicit Commutative Substructure in $$\mathfrak {su}(2^{n})$$
  • DOI:
    10.1007/s00025-025-02478-3
  • 发表时间:
    2025-07-19
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Moody Chu
  • 通讯作者:
    Moody Chu

Moody Chu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moody Chu', 18)}}的其他基金

Preparing Hamiltonians for Quantum Simulation: A Computational Framework for Cartan Decomposition via Lax Dynamics
为量子模拟准备哈密顿量:通过 Lax 动力学进行嘉当分解的计算框架
  • 批准号:
    2309376
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
From Quantum Entanglement to Tensor Decomposition by Global Optimization
从量子纠缠到全局优化的张量分解
  • 批准号:
    1912816
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Automated Structure Generation, Error Correction, and Semi-Definite Programming Techniques for Structured Quadratic Inverse Eigenvale Problems: Theory, Algorithms and Applications
结构化二次反特征值问题的自动结构生成、纠错和半定编程技术:理论、算法和应用
  • 批准号:
    1014666
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732299
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Quadratic Inverse Eigenvalue Problems for Model Updating in Science and Engineering: Theory and Computation
合作提案:科学与工程模型更新的二次逆特征值问题:理论与计算
  • 批准号:
    0505880
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
The Centroid Decomposition and Other Approximations to the SVD
SVD 的质心分解和其他近似
  • 批准号:
    0204157
  • 财政年份:
    2002
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Algorithms for the Inverse Problem of Matrix Construction
矩阵构造反问题的算法
  • 批准号:
    0073056
  • 财政年份:
    2000
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Adaptive Control Algorithms for Adaptive Optics Applications
用于自适应光学应用的自适应控制算法
  • 批准号:
    9803759
  • 财政年份:
    1998
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Eigenvalue Problems
数学科学:反特征值问题
  • 批准号:
    9422280
  • 财政年份:
    1995
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Matrix Differential Equations and Their Applications
数学科学:矩阵微分方程及其应用
  • 批准号:
    9123448
  • 财政年份:
    1992
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了