From Quantum Entanglement to Tensor Decomposition by Global Optimization

从量子纠缠到全局优化的张量分解

基本信息

  • 批准号:
    1912816
  • 负责人:
  • 金额:
    $ 47.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Entanglement and separability are twins. Entanglement is the most basic mode when characterizing the coupling or interaction of multiple parts within a system; separability is to represent the complicated system in an equivalent but more manifesting relationship for understanding and control. This project aims to develop methods to numerically measure the "absolute" gap between an entangled state and its nearest separable state with the new tool of global optimization techniques. The initial goal is to establish a basal paradigm for gauging entanglement and separability with global optimization technologies in the context of quantum informatics. With modest modification, the paradigm can be applied across different fields. Results from this research will make it possible to address separability issues in many other contexts, such as economic development, agricultural production, industrial manufacture, environmental evolution, social networks, and applied mechanics, where constituents, factors, parts, or subsystems are regularly intertwined.Quantum entanglement is regarded as an indispensable resource for many applications due to the potential of quantum computing for fast, concurrent computation. The nonlinear correlations among subsystems make it difficult to analyze by traditional decomposition techniques. On the other hand, the notion of tensors has also gained new attention thanks to its great descriptive flexibility. Both structures share similar features concerning entanglement and separability. There have been many activities and achievements on both fronts. Yet, the avenue of numerically measuring the "absolute" gap between an entangled state and its nearest separable state has never been fully undertaken. This project aims to tackle both quantum entanglement and low-rank tensor approximation under one framework by global optimization techniques. When global optimization is finished, within the prescribed error tolerance we have in hand the metric between a given state and the set of separable states, by which we can gauge the quality of entanglement, draw conclusions on whether the given system is robustly entangled, and extend the knowledge to other applications. This project aims to establish theoretic and algorithmic foundations to: 1) exploit the geometric properties of entanglement; 2) develop a common platform for new algorithms effective in robustness, speed, and accuracy; and 3) explore the generalization to applications with additional constraints. This research together with the resulting software package is expected to find wide applicability extending from quantum mechanics to data analysis, network analysis, and other fields. The work will solidify study of many features under one unified framework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纠缠性和可分离性是双胞胎。纠缠态是表征系统内多个部分耦合或相互作用的最基本模式;可分性是将复杂的系统用一种等价但更明显的关系来表示,以便于理解和控制。本项目旨在利用全局优化技术的新工具,开发一种方法来数值测量纠缠态与其最近可分离态之间的“绝对”差距。最初的目标是在量子信息学的背景下,用全局优化技术建立一个测量纠缠和可分离性的基本范式。稍加修改,该范式可以应用于不同的领域。这项研究的结果将使解决许多其他背景下的可分离性问题成为可能,例如经济发展,农业生产,工业制造,环境演变,社会网络和应用力学,其中成分,因素,零件或子系统经常交织在一起。由于量子计算具有快速、并发计算的潜力,量子纠缠被认为是许多应用中不可或缺的资源。子系统之间的非线性相关性使得传统的分解技术难以进行分析。另一方面,张量的概念由于其在描述上的极大灵活性也获得了新的关注。这两种结构在纠缠和可分离性方面具有相似的特征。在这两条战线上开展了许多活动,取得了许多成就。然而,对纠缠态与其最近的可分离态之间的“绝对”间隙进行数值测量的途径从未完全进行过。本项目旨在利用全局优化技术在一个框架下解决量子纠缠和低秩张量逼近问题。当全局优化完成后,在规定的误差容限内,我们掌握了给定状态和可分离状态集之间的度量,通过它我们可以衡量纠缠的质量,得出给定系统是否鲁棒纠缠的结论,并将知识扩展到其他应用。本项目旨在建立理论和算法基础:1)利用纠缠的几何性质;2)为鲁棒性、速度和准确性有效的新算法开发一个通用平台;3)探索在附加约束条件下的推广应用。本研究以及由此产生的软件包有望从量子力学扩展到数据分析、网络分析等领域。这项工作将把许多特征的研究巩固在一个统一的框架下。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rank-1 Approximation for Entangled Multipartite Real Systems
  • DOI:
    10.1007/s10915-022-01805-y
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Matthew M. Lin;M. Chu
  • 通讯作者:
    Matthew M. Lin;M. Chu
Nonlinear Power-Like and SVD-Like Iterative Schemes with Applications to Entangled Bipartite Rank-1 Approximation
  • DOI:
    10.1137/20m1336059
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Chu;Matthew M. Lin
  • 通讯作者:
    M. Chu;Matthew M. Lin
Low-rank approximation to entangled multipartite quantum systems
纠缠多部分量子系统的低阶近似
  • DOI:
    10.1007/s11128-022-03467-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Lin, Matthew M.;Chu, Moody T.
  • 通讯作者:
    Chu, Moody T.
A complex-valued gradient flow for the entangled bipartite low rank approximation
  • DOI:
    10.1016/j.cpc.2021.108185
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Chu;Matthew M. Lin
  • 通讯作者:
    M. Chu;Matthew M. Lin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moody Chu其他文献

On the Refinement of Cartan Decomposition: An Implicit Commutative Substructure in $$\mathfrak {su}(2^{n})$$
  • DOI:
    10.1007/s00025-025-02478-3
  • 发表时间:
    2025-07-19
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Moody Chu
  • 通讯作者:
    Moody Chu

Moody Chu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moody Chu', 18)}}的其他基金

Preparing Hamiltonians for Quantum Simulation: A Computational Framework for Cartan Decomposition via Lax Dynamics
为量子模拟准备哈密顿量:通过 Lax 动力学进行嘉当分解的计算框架
  • 批准号:
    2309376
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Numerical Algorithms as Dynamcal Systems - Structure Preservation, Convergence Theory, and Rediscretization
作为动态系统的数值算法 - 结构保持、收敛理论和重新离散化
  • 批准号:
    1316779
  • 财政年份:
    2013
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Automated Structure Generation, Error Correction, and Semi-Definite Programming Techniques for Structured Quadratic Inverse Eigenvale Problems: Theory, Algorithms and Applications
结构化二次反特征值问题的自动结构生成、纠错和半定编程技术:理论、算法和应用
  • 批准号:
    1014666
  • 财政年份:
    2010
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732299
  • 财政年份:
    2007
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Quadratic Inverse Eigenvalue Problems for Model Updating in Science and Engineering: Theory and Computation
合作提案:科学与工程模型更新的二次逆特征值问题:理论与计算
  • 批准号:
    0505880
  • 财政年份:
    2005
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant
The Centroid Decomposition and Other Approximations to the SVD
SVD 的质心分解和其他近似
  • 批准号:
    0204157
  • 财政年份:
    2002
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant
Algorithms for the Inverse Problem of Matrix Construction
矩阵构造反问题的算法
  • 批准号:
    0073056
  • 财政年份:
    2000
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Adaptive Control Algorithms for Adaptive Optics Applications
用于自适应光学应用的自适应控制算法
  • 批准号:
    9803759
  • 财政年份:
    1998
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Eigenvalue Problems
数学科学:反特征值问题
  • 批准号:
    9422280
  • 财政年份:
    1995
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Matrix Differential Equations and Their Applications
数学科学:矩阵微分方程及其应用
  • 批准号:
    9123448
  • 财政年份:
    1992
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Research Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Ultrafast Strong-Field Control of Coherence and Entanglement in Atoms and Molecules
原子和分子相干和纠缠的超快强场控制
  • 批准号:
    2309238
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
  • 批准号:
    2238096
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324300
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Precise test of the B-meson quantum entanglement based on a new method for event topology determination
基于事件拓扑确定新方法的B介子量子纠缠精确测试
  • 批准号:
    23K03429
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on CARS enhancement with quantum entanglement aiming at noninvasive glucose monitoring
针对无创血糖监测的量子纠缠CARS增强研究
  • 批准号:
    23K19224
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel optomechanical entanglement
新型光机纠缠
  • 批准号:
    23KF0087
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了