Algorithms for the Inverse Problem of Matrix Construction

矩阵构造反问题的算法

基本信息

  • 批准号:
    0073056
  • 负责人:
  • 金额:
    $ 11.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

The inverse problem of matrix construction arises in manyareas of important applications. Matrices under constructionare supposed to satisfy certain specific constraints. Theconstraints could be inherited intrinsically from the physicalfeasibility of a certain mechanical structure or could bedriven extrinsically by the desirable property of a certaindesign parameter. This proposal intends to extend theinvestigation that the PI has been conducting in the pastyears with emphasis on the the development of numericalalgorithms for application to challenging inverse problems.Four specific inverse problems of matrix construction willbe studied via three possible numerical approaches. Techniquesto be used involves computer experiments, high resolutiongraphics and symbolic manipulation, in conjunction withmathematical analysis. This project is expected to findimportant applications ranging from new development ofnumerical algorithms to theoretic solution of difficultproblems. Since matrix reconstruction with specifiedproperties arises from a remarkably wide area of disciplines,the resulting technology would have substantial impact on theprogress in scientific and engineering fields.In the era of information and digital technologies,massive data processing becomes an imperative taskat almost every level of applications. In many situationsthe digitized information is gathered and stored as a datamatrix. Nonetheless, because most of the informationgathering devices or methods have only finite bandwidth, onecannot avoid the fact that the data collected often are notexact. Signals received by antenna arrays often arecontaminated by instrumental noises; astronomical imagesacquired by telescopes often are blurred by atmosphericturbulence; and even empirical data obtained in laboratoriesoften do not satisfy intrinsic physical constraints. Beforeany forward analysis technique can be applied, it is importantto first reconstruct the data matrices so that the inexactnessis reduced while certain feasibility conditions are satisfied.The general objective of this proposal is to develop numericalalgorithms to carry out this kind of data reconstruction task.The work in this proposal concerns the mathematical theory andthe numerical implementation of three algorithms for fourspecific inverse construction problems. This investigationcould lead to improved techniques for use in several nationalstrategic areas, including ground-based astro-imagingprocessing, medicine, communications, and laser technology.
矩阵构造的逆问题出现在许多重要的应用领域。构造中的矩阵应该满足某些特定的约束条件。这些约束可以从某种机械结构的物理可行性中继承下来,也可以由某种设计参数的合意性质从外部驱动。这项建议旨在扩展PI在过去几年中所进行的研究,重点是开发应用于挑战逆问题的数值算法。将通过三种可能的数值方法来研究四个具体的矩阵构造的逆问题。使用的技术包括计算机实验、高分辨率图形和符号处理,以及数学分析。从数值算法的新发展到困难问题的理论解决,这一项目有望找到重要的应用。由于具有特定性质的矩阵重构产生于非常广泛的学科领域,由此产生的技术将对科学和工程领域的进步产生实质性的影响。在信息和数字技术时代,海量数据处理成为几乎每个层次的应用都必须完成的任务。在许多情况下,数字化信息被收集并存储为数据矩阵。尽管如此,由于大多数信息收集设备或方法只有有限的带宽,人们无法避免这样一个事实,即收集的数据往往是无文本的。天线阵接收到的信号往往受到仪器噪声的污染;望远镜获取的天文图像往往因大气湍流而变得模糊;甚至实验室获得的经验数据也往往不满足内在的物理约束。在应用任何正向分析技术之前,重要的是首先重构数据矩阵,以便在满足一定的可行性条件的同时减少不精确度。本方案的总体目标是开发实现这种数据重构任务的数值算法。本方案的工作涉及四个具体逆构造问题的数学理论和三种算法的数值实现。这项研究可能会改进用于几个国家战略领域的技术,包括地面天文成像处理、医学、通信和激光技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moody Chu其他文献

On the Refinement of Cartan Decomposition: An Implicit Commutative Substructure in $$\mathfrak {su}(2^{n})$$
  • DOI:
    10.1007/s00025-025-02478-3
  • 发表时间:
    2025-07-19
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Moody Chu
  • 通讯作者:
    Moody Chu

Moody Chu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moody Chu', 18)}}的其他基金

Preparing Hamiltonians for Quantum Simulation: A Computational Framework for Cartan Decomposition via Lax Dynamics
为量子模拟准备哈密顿量:通过 Lax 动力学进行嘉当分解的计算框架
  • 批准号:
    2309376
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
From Quantum Entanglement to Tensor Decomposition by Global Optimization
从量子纠缠到全局优化的张量分解
  • 批准号:
    1912816
  • 财政年份:
    2019
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
Numerical Algorithms as Dynamcal Systems - Structure Preservation, Convergence Theory, and Rediscretization
作为动态系统的数值算法 - 结构保持、收敛理论和重新离散化
  • 批准号:
    1316779
  • 财政年份:
    2013
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
Automated Structure Generation, Error Correction, and Semi-Definite Programming Techniques for Structured Quadratic Inverse Eigenvale Problems: Theory, Algorithms and Applications
结构化二次反特征值问题的自动结构生成、纠错和半定编程技术:理论、算法和应用
  • 批准号:
    1014666
  • 财政年份:
    2010
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732299
  • 财政年份:
    2007
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Quadratic Inverse Eigenvalue Problems for Model Updating in Science and Engineering: Theory and Computation
合作提案:科学与工程模型更新的二次逆特征值问题:理论与计算
  • 批准号:
    0505880
  • 财政年份:
    2005
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Continuing Grant
The Centroid Decomposition and Other Approximations to the SVD
SVD 的质心分解和其他近似
  • 批准号:
    0204157
  • 财政年份:
    2002
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Continuing Grant
Adaptive Control Algorithms for Adaptive Optics Applications
用于自适应光学应用的自适应控制算法
  • 批准号:
    9803759
  • 财政年份:
    1998
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Eigenvalue Problems
数学科学:反特征值问题
  • 批准号:
    9422280
  • 财政年份:
    1995
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Matrix Differential Equations and Their Applications
数学科学:矩阵微分方程及其应用
  • 批准号:
    9123448
  • 财政年份:
    1992
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant

相似国自然基金

新型简化Inverse Lax-Wendroff方法的发展与应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
  • 批准号:
    11801143
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of inverse problem analysis for internal damage of materials using data assimilation
利用数据同化开发材料内部损伤反问题分析
  • 批准号:
    23K17336
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
The inverse backscattering problem and the inverse fixed angle scattering problem
逆后向散射问题和逆固定角散射问题
  • 批准号:
    2307800
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
PRIMES: The Inverse Eigenvalue Problem for Graphs and Collaboration to Promote Inclusivity in Undergraduate Mathematics Education
PRIMES:图的反特征值问题和协作以促进本科数学教育的包容性
  • 批准号:
    2331072
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
Inverse problem theory for innovation of detection methods
检测方法创新的反问题理论
  • 批准号:
    23KK0049
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
3D tracking system for micro magnetization vector realized by inverse problem algorithm
反问题算法实现的微磁化矢量3D跟踪系统
  • 批准号:
    22K04246
  • 财政年份:
    2022
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on inverse problem analysis of viscoelastic equations
粘弹性方程反问题分析研究
  • 批准号:
    22K03366
  • 财政年份:
    2022
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2111039
  • 财政年份:
    2021
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
Development of typhoon ensemble forecasting system based on the source inverse problem of potential vorticity
基于位涡源反问题的台风集合预报系统研制
  • 批准号:
    21H01431
  • 财政年份:
    2021
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2110833
  • 财政年份:
    2021
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
Inverse Protein Folding Problem for Some Simple Structures in HP-Model
HP模型中一些简单结构的逆蛋白质折叠问题
  • 批准号:
    564287-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 11.6万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了