Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
基本信息
- 批准号:RGPIN-2016-03901
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program consists of several projects at the crossroad of dynamics, probability theory, ergodic theory, number theory, and mathematical physics. My broad aim is two-fold: I plan to understand the long-time behaviour of large classes of dynamical systems to address open questions in dynamics and ergodic theory, and at the same time I intend to explore the applications of novel dynamical tools to solve problems in other disciplines, thus developing a dynamical framework to study several mathematical objects outside the realm of dynamics.***My interdisciplinary research activity has already strengthened the bridges between the fields of dynamics, number theory, random processes, and recently also mathematical physics. In this proposal I intend to focus on the following classes of dynamical systems:****(1) One-parameter flows on homogeneous spaces, such as the geodesic and horocycle flow in the unit tangent bundle of a hyperbolic manifold, with emphasis on effective equidistribution of horocycles. Homogeneous flows are studied by means of Ratner's theory and equidistribution results in homogeneous dynamics yield important applications to number theory and mathematical physics. For example, flows on homogeneous spaces can be used to describe the average quantitative behavior of autocorrelation functions in quantum systems, even in the setting of supersymmetric quantum mechanics. ***(2) Symbolic systems (e.g. subshifts of the full shift on finitely many symbols) arising in the study of deterministic sequences of number-theoretical nature. The Möbius randomness heuristics and the related recent conjecture by Sarnak prompted the study of such subshifts as topological as well as measure-theoretical dynamical systems. This dual point of view has been recently shown to be crucial to approach a classical conjecture by Chowla in number theory.***(3) Two-dimensional dynamical systems with zero entropy, such as the Boca-Cobeli-Zaharescu map associated with the theory of Farey fractions, or the Casati-Prosen map appearing in the study of triangular billiards.****My proposal will outline several projects, divided into three categories: (A) fundamental theoretical progress in dynamics, (B) theoretical applications to number theory and quantum mechanics, (C) interdisciplinary applications to physics and chemistry.****The proposed research will feature the training of at least 5 HQPs per year. The students (both graduate and undergraduate) and postdoctoral fellows involved will will gain unique technical skills and will be trained to become proficient communicators, thus earning access to many potential careers in the mathematical sciences.***My research agenda, its interdisciplinary application, my HQP training, and all my pursuits in service of the scientific community will have significant international impact and will benefit the field of dynamical systems and Canadian mathematics at large.**
我的研究计划包括几个项目在交叉的动力学,概率论,遍历理论,数论和数学物理。我的主要目标有两个:我计划了解大类动力系统的长期行为,以解决动力学和遍历理论中的未决问题,同时我打算探索新的动力学工具的应用,以解决其他学科中的问题,从而开发一个动力学框架来研究动力学领域之外的几个数学对象。我的跨学科研究活动已经加强了动力学,数论,随机过程,最近也数学物理领域之间的桥梁。在这个建议中,我打算集中在以下几类动力系统:*(1)齐性空间上的单参数流,例如双曲流形的单位切丛中的测地线和horocycle流,重点是horocycle的有效等分布。均匀流的研究通过拉特纳的理论和均匀动力学的均匀分布的结果产生重要的应用数论和数学物理。例如,齐次空间上的流动可以用来描述量子系统中自相关函数的平均定量行为,甚至在超对称量子力学的背景下。 ***(2)符号系统(例如,全移位的子移位在200个符号上),产生于数论性质的确定性序列的研究。莫比乌斯随机性理论和最近由萨纳克提出的相关猜想促进了对拓扑和测度论动力系统等子移位的研究。这种对偶的观点最近被证明是至关重要的接近一个经典猜想Chowla在数论中。(3)熵为零的二维动力系统,例如与Farey分数理论相关的Boca-Cobeli-Zaharescu映射,或在三角台球研究中出现的Casati-Prosen映射。我的建议将概述几个项目,分为三类:(A)动力学的基本理论进展,(B)数论和量子力学的理论应用,(C)物理和化学的跨学科应用。拟议的研究将包括每年至少培训5名HQP。参与的学生(包括研究生和本科生)和博士后研究员将获得独特的技术技能,并将接受培训,成为熟练的沟通者,从而获得许多潜在的数学科学职业。我的研究议程,它的跨学科应用,我的HQP培训,以及我在科学界服务的所有追求将产生重大的国际影响,并将有利于动力系统和加拿大数学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cellarosi, Francesco其他文献
Cellarosi, Francesco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cellarosi, Francesco', 18)}}的其他基金
Studying Randomness in Number Theory and Quantum Mechanics via Dynamics
通过动力学研究数论和量子力学中的随机性
- 批准号:
RGPIN-2022-04330 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
- 批准号:
RGPIN-2016-03901 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
- 批准号:
RGPIN-2016-03901 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
- 批准号:
RGPIN-2016-03901 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
- 批准号:
RGPIN-2016-03901 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
关于群上的短零和序列及其cross number的研究
- 批准号:11501561
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Theoretical analysis about the impact of sharing economy upon total number of cars
共享经济对汽车保有量影响的理论分析
- 批准号:
21K04288 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
- 批准号:
RGPIN-2016-03901 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Modular forms in Number Theory, Group Theory and Theoretical Physics
数论、群论和理论物理中的模形式
- 批准号:
542521-2019 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
University Undergraduate Student Research Awards
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
- 批准号:
RGPIN-2016-03901 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
- 批准号:
RGPIN-2016-03901 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
- 批准号:
RGPIN-2016-03901 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Class number problem in Iwasawa theoretical extensions of algebraic number fields
岩泽代数数域理论扩展中的类数问题
- 批准号:
16K17580 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Statistical and Number-Theoretical Properties of Dynamical Systems
动力系统的统计和数论性质
- 批准号:
1363227 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Theoretical framework beyond the standard model studied from origin of neutrino masses, dark matter and baryon number asymmetry
中微子质量起源、暗物质和重子数不对称性研究的超越标准模型的理论框架
- 批准号:
24540263 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Number-theoretical study on graph Laplacians
图拉普拉斯算子的数论研究
- 批准号:
23540014 - 财政年份:2011
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)