Linear Response Eigenvalue Problem: New Minimization Principles and Efficient Algorithms
线性响应特征值问题:新的最小化原理和高效算法
基本信息
- 批准号:1317330
- 负责人:
- 金额:$ 21.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The linear response eigenvalue problem, also known as the random phase approximation eigenvalue problem, arises from computing excitation states (energies) of physical systems. Such an eigenvalue problem is usually of large scale -- the matrix dimensions for a molecule of reasonable size can easily get up to tens of millions. It is considered much more difficult than the symmetric eigenvalue problem because it is non-Hermitian in nature. But it has internal symmetric structures in each of the submatrix blocks, which previously have been largely unexploited. This project involves the development of new theory and advanced computational methods through fully exploiting the internal symmetric structures. A systematic study will be thoroughly conducted to uncover new min/maximization principles. These principles should mirror those for the symmetric eigenvalue problem, and will make it possible and guide the investigator to transform some of existing and successful techniques for the symmetric eigenvalue problem for use in the linear response eigenvalue problem research, It is highly expected that new efficient algorithms that are capable of computing several smallest positive eigenvalues simultaneously will emerge as the result of this project. In addition to advancing research in the linear response eigenvalue problem, the investigator will recruit and train graduate students in computational mathematics and interdisciplinary studies. The linear response eigenvalue problem is a major tool in computing energy excitation states of electrons and molecules. This project will critically advance current understanding and solution techniques for the eigenvalue problem in the context of mathematical theory, computational methods, and software. With the successful completion of the project, a significant contribution will be made to the state-of-the-art physical excitation energy computations via random phase approximations, a proven technique that is widely used in computational quantum chemistry and physics.
线性响应本征值问题,也称为随机相位近似本征值问题,源于计算物理系统的激发态(能量)。这样的特征值问题通常是大规模的--对于一个合理大小的分子,矩阵维数可以很容易地达到数千万。它被认为比对称特征值问题困难得多,因为它本质上是非厄米特的。但它在每个子矩阵块中具有内部对称结构,这在以前很大程度上未被利用。该项目涉及通过充分利用内部对称结构来发展新理论和先进的计算方法。一个系统的研究将彻底进行,以发现新的最小/最大化原则。这些原则应反映对称特征值问题,并将使它成为可能,并指导研究人员将一些现有的和成功的对称特征值问题的技术用于线性响应特征值问题的研究,这是高度期望的新的高效算法,能够同时计算几个最小的正特征值将出现作为本项目的结果。除了推进线性响应特征值问题的研究外,研究人员还将招募和培训计算数学和跨学科研究的研究生。 线性响应本征值问题是计算电子和分子能量激发态的主要工具。本项目将在数学理论、计算方法和软件的背景下,批判性地推进当前对特征值问题的理解和解决技术。随着该项目的成功完成,将通过随机相位近似对最先进的物理激发能计算做出重大贡献,这是一种在计算量子化学和物理学中广泛使用的成熟技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ren-Cang Li其他文献
A Perturbation Bound for Definite Pencils
- DOI:
10.1016/0024-3795(93)90329-m - 发表时间:
1993-01 - 期刊:
- 影响因子:1.1
- 作者:
Ren-Cang Li - 通讯作者:
Ren-Cang Li
div class=pagediv class=layoutAreadiv class=columnbr /Maximization of the sum of the trace ratio on the span style=line-height:1.5;Stiefel manifold, I: Theory /spa
Stiefel 流形上迹比之和的最大化,I:理论
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Lei Hong Zhang;Ren-Cang Li - 通讯作者:
Ren-Cang Li
On generalizing trace minimization principles
关于推广踪迹最小化原则
- DOI:
10.1016/j.laa.2022.10.012 - 发表时间:
2023 - 期刊:
- 影响因子:1.1
- 作者:
Xin Liang;Li Wang;Lei-Hong Zhang;Ren-Cang Li - 通讯作者:
Ren-Cang Li
A Theory of the NEPv Approach for Optimization On the Stiefel Manifold
- DOI:
- 发表时间:
2023-04 - 期刊:
- 影响因子:0
- 作者:
Ren-Cang Li - 通讯作者:
Ren-Cang Li
Relative perturbation bounds for the unitary polar factor
- DOI:
10.1007/bf02510173 - 发表时间:
1997-03 - 期刊:
- 影响因子:1.5
- 作者:
Ren-Cang Li - 通讯作者:
Ren-Cang Li
Ren-Cang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ren-Cang Li', 18)}}的其他基金
Ubiquitous Doubling Algorithms for Nonlinear Matrix Equations and Applications
普遍存在的非线性矩阵方程和应用的倍增算法
- 批准号:
1719620 - 财政年份:2017
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Mathematical Theory and Fast Algorithms for Rayleigh Quotient-type Optimizations
AF:小型:协作研究:瑞利商型优化的数学理论和快速算法
- 批准号:
1527104 - 财政年份:2015
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
Collaborative Research: Efficient Solvers for Nonlinear Eigenvalue Problems and Applications
协作研究:非线性特征值问题的高效求解器及其应用
- 批准号:
1115834 - 财政年份:2011
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
Marching Over Poles: Innovative Ways to Solve Matrix Differential Riccati Equations
跨过极点:求解矩阵微分 Riccati 方程的创新方法
- 批准号:
0810506 - 财政年份:2008
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
Structural Preserving Numerical Methods for Eigenvalue Problems
特征值问题的结构保持数值方法
- 批准号:
0702335 - 财政年份:2006
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
Structural Preserving Numerical Methods for Eigenvalue Problems
特征值问题的结构保持数值方法
- 批准号:
0510664 - 财政年份:2005
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
CAREER: Fast and Accurate Computations of Applied Eigenproblems
职业:应用特征问题的快速准确计算
- 批准号:
9875201 - 财政年份:1999
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
相似国自然基金
生长素响应因子(Auxin Response Factors)在拟南芥雄配子发育中的功能研究
- 批准号:31970520
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
新型GhDRP1(Drought Response Protein1) 调控棉花应答干旱的分子网络解析及育种利用评价
- 批准号:31871668
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
秀丽隐杆线虫ASI神经元off-response的环路与分子机制
- 批准号:31600856
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
- 批准号:
2402252 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Impact of Environment-Seagrass-Microbe Interactions on Seagrass Stress Response and Ecosystem Functions
NSF PRFB 2023 财年:环境-海草-微生物相互作用对海草应激反应和生态系统功能的影响
- 批准号:
2305691 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Fellowship Award
NSF Postdoctoral Fellowship in Biology: Investigating the role of thermal stress response in facilitating adaptation in camel spiders
美国国家科学基金会生物学博士后奖学金:研究热应激反应在促进骆驼蜘蛛适应中的作用
- 批准号:
2305969 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Fellowship Award
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335761 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
- 批准号:
24K10485 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)