Ubiquitous Doubling Algorithms for Nonlinear Matrix Equations and Applications
普遍存在的非线性矩阵方程和应用的倍增算法
基本信息
- 批准号:1719620
- 负责人:
- 金额:$ 20.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator's (PI's) research is aimed at the solution of practical problems of optimal control theory from areas as diverse as vibration analysis for high speed trains and quantum transport in nano research. Underlying these applications are formulations that require the efficient and accurate solution of important nonlinear matrix equations which critically influence the overall performance and fidelity of the entire simulations. Past experience has shown that practically relevant simulations requiring solutions of nonlinear matrix equations are notoriously challenging to the point that computed solutions may be completely erroneous. This project aims at changing the status quo by developing a complete theory, devising innovative algorithms to better reflect problem structures, and designing more robust implementations. In addition to advancing research in these nonlinear matrix equations, the PI will recruit and train graduate students in computational mathematics and interdisciplinary studies.This project will advance the understanding and solution techniques for high impact nonlinear matrix equations in the context of mathematical theory, computational methods, and software. For decades, computational scientists and engineers have been struggling to compute trustworthy numerical solutions to some of these nonlinear matrix equations with limited success. For example, the entries of the solution matrices to M-matrix algebraic Riccati equations from Markov-modulated fluid flow theory represent probabilities of events, and tiny entries indicate events that are rare but still important, and thus need to be computed accurately. The eigenvalues from vibration analysis of high speed trains vary widely in magnitude beyond the ranges that the IEEE double precision can handle if not dealt with correctly. The doubling algorithm may not converge at all on the unperturbed nonlinear matrix equations for quantum transport in nano research. These difficulties are often not caused by the large sizes of the problems but rather are more due to their inherent mathematical properties. With the successful completion of this project, a complete and coherent unifying framework of doubling algorithms, along with the relevant theory, will be developed. A much deeper understanding of doubling algorithms will be gained, and it is possible that important applications will be identified where doubling algorithms can be utilized and are faster than the current state-of-the-art methods. More significantly, the theory developed will assure that the new algorithms will produce more trustworthy accurate numerical results than is currently possible.
首席研究员(PI)的研究旨在解决最优控制理论的实际问题,这些问题来自不同的领域,如高速列车的振动分析和纳米研究中的量子传输。这些应用程序的基础是配方,需要有效和准确的解决方案的重要的非线性矩阵方程,严重影响整个模拟的整体性能和保真度。过去的经验表明,实际相关的模拟需要解决非线性矩阵方程是众所周知的挑战点,计算的解决方案可能是完全错误的。该项目旨在通过开发一个完整的理论,设计创新的算法来更好地反映问题结构,并设计更强大的实现来改变现状。除了推进这些非线性矩阵方程的研究外,PI还将招募和培养计算数学和跨学科研究的研究生。该项目将在数学理论,计算方法和软件的背景下推进对高影响力非线性矩阵方程的理解和解决技术。几十年来,计算科学家和工程师一直在努力计算这些非线性矩阵方程的可靠数值解,但成功有限。例如,马尔可夫调制流体流动理论的M矩阵代数黎卡提方程的解矩阵的条目表示事件的概率,而微小的条目表示罕见但仍然重要的事件,因此需要精确计算。高速列车振动分析的特征值变化幅度很大,如果处理不当,超出了IEEE双精度可以处理的范围。在纳米研究中,对于量子输运的非线性矩阵方程,倍增算法可能根本不收敛。这些困难通常不是由问题的大尺寸引起的,而是更多地是由于其固有的数学性质。随着本计画的成功完成,将发展出一套完整且连贯的加倍演算法统一架构,并将沿着相关理论。加倍算法将获得更深入的理解,它是可能的,重要的应用将被确定,加倍算法可以利用,并比目前最先进的方法更快。更重要的是,开发的理论将确保新算法将产生比目前可能的更可靠的精确数值结果。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On generalizing trace minimization principles
关于推广踪迹最小化原则
- DOI:10.1016/j.laa.2022.10.012
- 发表时间:2023
- 期刊:
- 影响因子:1.1
- 作者:Xin Liang;Li Wang;Lei-Hong Zhang;Ren-Cang Li
- 通讯作者:Ren-Cang Li
Learning Low-Dimensional Latent Graph Structures: A Density Estimation Approach
- DOI:10.1109/tnnls.2019.2917696
- 发表时间:2020-04-01
- 期刊:
- 影响因子:10.4
- 作者:Wang, Li;Li, Ren-cang
- 通讯作者:Li, Ren-cang
Orthogonal Multi-view Analysis by Successive Approximations via Eigenvectors
- DOI:10.1016/j.neucom.2022.09.018
- 发表时间:2020-10
- 期刊:
- 影响因子:6
- 作者:L. xilinx Wang;Lei-Hong Zhang;Chungen Shen;Ren-Cang Li
- 通讯作者:L. xilinx Wang;Lei-Hong Zhang;Chungen Shen;Ren-Cang Li
First-order Perturbation Theory for Eigenvalues and Eigenvectors
特征值和特征向量的一阶微扰理论
- DOI:10.1137/19m124784x
- 发表时间:2020
- 期刊:
- 影响因子:10.2
- 作者:Greenbaum, Anne;Li, Ren-Cang;Overton, Michael L.
- 通讯作者:Overton, Michael L.
On an eigenvector-dependent nonlinear eigenvalue problem from the perspective of relative perturbation theory
- DOI:10.1016/j.cam.2021.113596
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:N. Truhar;Ren-Cang Li
- 通讯作者:N. Truhar;Ren-Cang Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ren-Cang Li其他文献
A Perturbation Bound for Definite Pencils
- DOI:
10.1016/0024-3795(93)90329-m - 发表时间:
1993-01 - 期刊:
- 影响因子:1.1
- 作者:
Ren-Cang Li - 通讯作者:
Ren-Cang Li
div class=pagediv class=layoutAreadiv class=columnbr /Maximization of the sum of the trace ratio on the span style=line-height:1.5;Stiefel manifold, I: Theory /spa
Stiefel 流形上迹比之和的最大化,I:理论
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Lei Hong Zhang;Ren-Cang Li - 通讯作者:
Ren-Cang Li
A Theory of the NEPv Approach for Optimization On the Stiefel Manifold
- DOI:
- 发表时间:
2023-04 - 期刊:
- 影响因子:0
- 作者:
Ren-Cang Li - 通讯作者:
Ren-Cang Li
Relative perturbation bounds for the unitary polar factor
- DOI:
10.1007/bf02510173 - 发表时间:
1997-03 - 期刊:
- 影响因子:1.5
- 作者:
Ren-Cang Li - 通讯作者:
Ren-Cang Li
Matrix Perturbation Theory
- DOI:
10.1201/9781420010572.ch15 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Ren-Cang Li - 通讯作者:
Ren-Cang Li
Ren-Cang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ren-Cang Li', 18)}}的其他基金
AF: Small: Collaborative Research: Mathematical Theory and Fast Algorithms for Rayleigh Quotient-type Optimizations
AF:小型:协作研究:瑞利商型优化的数学理论和快速算法
- 批准号:
1527104 - 财政年份:2015
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
Linear Response Eigenvalue Problem: New Minimization Principles and Efficient Algorithms
线性响应特征值问题:新的最小化原理和高效算法
- 批准号:
1317330 - 财政年份:2013
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
Collaborative Research: Efficient Solvers for Nonlinear Eigenvalue Problems and Applications
协作研究:非线性特征值问题的高效求解器及其应用
- 批准号:
1115834 - 财政年份:2011
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
Marching Over Poles: Innovative Ways to Solve Matrix Differential Riccati Equations
跨过极点:求解矩阵微分 Riccati 方程的创新方法
- 批准号:
0810506 - 财政年份:2008
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
Structural Preserving Numerical Methods for Eigenvalue Problems
特征值问题的结构保持数值方法
- 批准号:
0702335 - 财政年份:2006
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
Structural Preserving Numerical Methods for Eigenvalue Problems
特征值问题的结构保持数值方法
- 批准号:
0510664 - 财政年份:2005
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
CAREER: Fast and Accurate Computations of Applied Eigenproblems
职业:应用特征问题的快速准确计算
- 批准号:
9875201 - 财政年份:1999
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
相似海外基金
肺腺癌の発生進展に対する全ゲノム重複(WGD: Whole Genome Doubling)の関与
全基因组复制(WGD)参与肺腺癌的发生和进展
- 批准号:
24K10104 - 财政年份:2024
- 资助金额:
$ 20.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how variations in nuclear size after whole genome doubling affect tumorigenesis
了解全基因组加倍后核大小的变化如何影响肿瘤发生
- 批准号:
10607178 - 财政年份:2023
- 资助金额:
$ 20.08万 - 项目类别:
Doctoral Dissertation Research: Phonetics of period doubling
博士论文研究:倍周期语音学
- 批准号:
2141433 - 财政年份:2022
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
Swept source retinal visible optical coherence tomography using broadly tunable frequency doubling of NIR MEMS-VCSELs
使用近红外 MEMS-VCSEL 的宽可调倍频进行扫描源视网膜可见光学相干断层扫描
- 批准号:
10546927 - 财政年份:2022
- 资助金额:
$ 20.08万 - 项目类别:
Continuous liquid-liquid extractors for doubling of productivity and henhancement of batch based drug manufacturing
连续液-液萃取器可提高生产率并增强批量药物生产
- 批准号:
10664025 - 财政年份:2021
- 资助金额:
$ 20.08万 - 项目类别:
OPUS: Genome doubling in an evolutionary model: Synthesis across biological and temporal scales
OPUS:进化模型中的基因组加倍:跨生物和时间尺度的合成
- 批准号:
2043478 - 财政年份:2021
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
Continuous liquid-liquid extractors for doubling of productivity and henhancement of batch based drug manufacturing
连续液-液萃取器可提高生产率并增强批量药物生产
- 批准号:
10545666 - 财政年份:2021
- 资助金额:
$ 20.08万 - 项目类别:
Continuous liquid-liquid extractors for doubling of productivity and henhancement of batch based drug manufacturing
连续液-液萃取器可提高生产率并增强批量药物生产
- 批准号:
10153085 - 财政年份:2021
- 资助金额:
$ 20.08万 - 项目类别:
Testing tea bag decomposition doubling time rates in water with a 10C increase in temperature
测试茶包在水中温度升高 10°C 时分解倍增时间速率
- 批准号:
551268-2020 - 财政年份:2020
- 资助金额:
$ 20.08万 - 项目类别:
University Undergraduate Student Research Awards
Doubling the power of a unique astronomical survey facility
独特天文测量设施的力量加倍
- 批准号:
LE180100009 - 财政年份:2018
- 资助金额:
$ 20.08万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities