Structural Preserving Numerical Methods for Eigenvalue Problems

特征值问题的结构保持数值方法

基本信息

  • 批准号:
    0510664
  • 负责人:
  • 金额:
    $ 24.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

Large and sparse matrix computational problems are often solved by certainsubspace projection methods -- most commonly Krylov subspace type projections.The basic idea is to project the original problems (matrices) of high dimensionsonto certain subspaces to arrive at smaller and manageable ones, and the smallerreduced problems can then be solved by one of the dense matrix algorithms such asthose in LAPACK. Existing projection techniques often do not preserve structuralproperties enjoyed by eigenproblems from various engineering applications, andtherefore the reduced problems do not necessarily reflect their practicalbackgrounds in any meaningful ways. It is conceivable, as it is often the case,that approximating a problem by one of its own kind would do better. Indeed thereare cases where structural preserving methods are far superior to those that areblind to the inherent structures. The objective of this proposal is to exploitin depth structural properties of matrices from the standpoint of their applicationbackgrounds and to develop accurate and efficient structural preserving numericalmethods for eigenvalue and related problems of practical significance. A number ofinteresting ideas will be pursued here, including a general framework for carryingout structural preserving subspace projections, an unifying convergence analysisfor all Krylov subspace type projections that connects moment matching propertiesin reduced order modeling and eigenvalue and eigenvector convergence theory, and asub-orthogonalization process that will serve as the basis to devise efficientprojections.Eigenproblems appear ubiquitously all across applied science and engineering,and their solutions are routinely sought and are critical in one way or anotherto various scientific computational tasks. Examples includes computationalproblems from structural dynamics, control systems, circuit simulations,computational electromagnetics and microelectromechanical systems, data mining,and web search engine design, etc. This investigation shall advance significantlythe underlying engineering applications by making the involved matrix computationsmuch less expensive, more accurate, and most importantly result in scientificsimulations that reflect better the underlying physics. Graduate students withemerging expertise in numerical eigenvalue computations will be involved.
大型和稀疏矩阵计算问题通常通过某些子空间投影方法来解决--最常见的是Krylov子空间类型投影。基本思想是将高维的原始问题(矩阵)投影到某些子空间上,以获得较小且可管理的子空间,然后可以通过LAPACK中的稠密矩阵算法之一来解决较小的简化问题。现有的投影技术往往不保留结构属性享有的特征问题从各种工程应用,因此,减少的问题不一定反映其实际背景在任何有意义的方式。可以想象,用一个同类问题来近似一个问题会做得更好,这是常有的事。事实上,在某些情况下,结构保护方法远远上级那些对固有结构视而不见的方法。本文的目的是从矩阵的应用背景出发,深入研究矩阵的结构性质,并为特征值及相关问题发展具有实际意义的精确、高效的保结构数值方法。本文提出了一系列有趣的思想,包括:构造保持结构的子空间投影的一般框架,将降阶模型中的矩匹配性质与特征值和特征向量收敛理论联系起来的所有Krylov子空间投影的统一收敛性分析,和,正交化过程,这将作为基础,设计efficientprojects.Eigenproblems出现无处不在所有应用科学和工程,和他们的解决方案是例行寻求和关键的一种或另一种方式,以各种科学计算任务。例子包括计算问题,从结构动力学,控制系统,电路仿真,计算电磁学和微机电系统,数据挖掘,和网络搜索引擎设计等。这项调查将大大推进底层的工程应用,使所涉及的矩阵计算更便宜,更准确,最重要的是在scientificsimulations,更好地反映了底层的物理。研究生与新兴的专业知识,在数值特征值计算将参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ren-Cang Li其他文献

On generalizing trace minimization principles
关于推广踪迹最小化原则
  • DOI:
    10.1016/j.laa.2022.10.012
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Xin Liang;Li Wang;Lei-Hong Zhang;Ren-Cang Li
  • 通讯作者:
    Ren-Cang Li
Matrix Perturbation Theory
  • DOI:
    10.1201/9781420010572.ch15
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ren-Cang Li
  • 通讯作者:
    Ren-Cang Li
div class=pagediv class=layoutAreadiv class=columnbr /Maximization of the sum of the trace ratio on the span style=line-height:1.5;Stiefel manifold, I: Theory /spa
Stiefel 流形上迹比之和的最大化,I:理论
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Hong Zhang;Ren-Cang Li
  • 通讯作者:
    Ren-Cang Li
A Theory of the NEPv Approach for Optimization On the Stiefel Manifold
  • DOI:
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ren-Cang Li
  • 通讯作者:
    Ren-Cang Li
A Perturbation Bound for Definite Pencils

Ren-Cang Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ren-Cang Li', 18)}}的其他基金

Ubiquitous Doubling Algorithms for Nonlinear Matrix Equations and Applications
普遍存在的非线性矩阵方程和应用的倍增算法
  • 批准号:
    1719620
  • 财政年份:
    2017
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Mathematical Theory and Fast Algorithms for Rayleigh Quotient-type Optimizations
AF:小型:协作研究:瑞利商型优化的数学理论和快速算法
  • 批准号:
    1527104
  • 财政年份:
    2015
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant
Linear Response Eigenvalue Problem: New Minimization Principles and Efficient Algorithms
线性响应特征值问题:新的最小化原理和高效算法
  • 批准号:
    1317330
  • 财政年份:
    2013
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient Solvers for Nonlinear Eigenvalue Problems and Applications
协作研究:非线性特征值问题的高效求解器及其应用
  • 批准号:
    1115834
  • 财政年份:
    2011
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant
Marching Over Poles: Innovative Ways to Solve Matrix Differential Riccati Equations
跨过极点:求解矩阵微分 Riccati 方程的创新方法
  • 批准号:
    0810506
  • 财政年份:
    2008
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant
Structural Preserving Numerical Methods for Eigenvalue Problems
特征值问题的结构保持数值方法
  • 批准号:
    0702335
  • 财政年份:
    2006
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant
CAREER: Fast and Accurate Computations of Applied Eigenproblems
职业:应用特征问题的快速准确计算
  • 批准号:
    9875201
  • 财政年份:
    1999
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
  • 批准号:
    23K17655
  • 财政年份:
    2023
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant
Physics-Informed Structure-Preserving Numerical Approximations of Thermodynamically Consistent Models for Non-equilibrium Phenomena
非平衡现象热力学一致模型的物理信息保结构数值近似
  • 批准号:
    2405605
  • 财政年份:
    2023
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant
Physics-Informed Structure-Preserving Numerical Approximations of Thermodynamically Consistent Models for Non-equilibrium Phenomena
非平衡现象热力学一致模型的物理信息保结构数值近似
  • 批准号:
    2111479
  • 财政年份:
    2021
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant
A novel development of optimization and deep learning methods based on the idea of structure-preserving numerical analysis
基于结构保持数值分析思想的优化和深度学习方法的新发展
  • 批准号:
    21H03452
  • 财政年份:
    2021
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
  • 批准号:
    2012269
  • 财政年份:
    2020
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant
Discrete integration by parts on any convex polygon and design of structure-preserving numerical schemes
任意凸多边形上的分部离散积分及保结构数值格式的设计
  • 批准号:
    20K20883
  • 财政年份:
    2020
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
  • 批准号:
    2012634
  • 财政年份:
    2020
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Standard Grant
Structure-Preserving Numerical Methods for Strongly Nonlinear Elliptic Partial Differential Equations
强非线性椭圆偏微分方程的保结构数值方法
  • 批准号:
    1818861
  • 财政年份:
    2018
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了