Approximation Algorithms for Data Networks
数据网络的近似算法
基本信息
- 批准号:1320854
- 负责人:
- 金额:$ 35.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project seeks to develop new algorithmic techniques for thedesign of and routing in data networks. Classical network optimizationproblems address transportation networks that carry physicalcommodities. Data networks are fundamentally different --- data can bemodified, compressed, and replicated at little cost. Incorporatingthis flexibility in altering traffic into network optimizationproblems can bring about a considerable improvement in the capacitiesof communication networks.This project aims to revisit classical network optimization problemswithin a new model where the cost of carrying data is non-linear anddepends on its compressibility. It aims to provide theoreticalunderpinnings for new WAN optimization approaches proposed in thenetworking literature, including, for example, traffic redundancyelimination.The PI considers a model where links in the network can compress data andremove duplicate packets. For example, if two traffic streams containidentical data and use overlapping routes, edges carrying both streamsneed only transmit the common packets once; these can then bereplicated at routers where the streams diverge. Accordingly, the loadon an edge is a submodular function of the traffic streams that usethe edge. Unlike previous work on network optimization with non-linearcosts, in this model, the cost of routing depends on the identities ofthe traffic streams involved, and not just on the total trafficvolume. Most of the problems considered are computationallyintractable and the PI aims to develop approximation algorithms.Several graduate and undergraduate courses will benefit from this project.
本项目旨在为数据网络的设计和路由开发新的算法技术。经典的网络优化问题解决运输网络进行实物商品。数据网络是根本不同的-数据可以被修改,压缩,并以很小的成本复制。将这种灵活性转化为网络优化问题,可以大大提高通信网络的容量,本项目旨在重新审视经典网络优化问题,在一个新的模型中,携带数据的成本是非线性的,并取决于其压缩性。它的目的是为网络文献中提出的新的WAN优化方法提供理论基础,例如,包括流量冗余消除。PI考虑了网络中的链路可以压缩数据并删除重复数据包的模型。例如,如果两个流量流包含相同的数据并使用重叠的路由,则携带两个流的边缘只需要传输一次公共数据包;然后可以在流分叉的路由器处复制这些数据包。因此,边缘上的负载是使用该边缘的业务流的子模函数。与之前关于非线性成本网络优化的工作不同,在该模型中,路由成本取决于所涉及的流量流的身份,而不仅仅取决于总流量。大多数的问题被认为是computationallyintractable和PI的目的是开发近似算法。几个研究生和本科生课程将受益于这个项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuchi Chawla其他文献
Pricing randomized allocations
随机分配定价
- DOI:
10.1137/1.9781611973075.49 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Patrick Briest;Shuchi Chawla;Robert D. Kleinberg;S. Weinberg;A. P. Sloan;Foundation Fellowship - 通讯作者:
Foundation Fellowship
Mechanism design for data science
数据科学的机制设计
- DOI:
10.1145/2600057.2602881 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Shuchi Chawla;Jason D. Hartline;Denis Nekipelov - 通讯作者:
Denis Nekipelov
Visions in Theoretical Computer Science: A Report on the TCS Visioning Workshop 2020
理论计算机科学的愿景:2020 年 TCS 愿景研讨会报告
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Shuchi Chawla;Jelani Nelson;C. Umans;David Woodruff - 通讯作者:
David Woodruff
Buy-Many Mechanisms for Many Unit-Demand Buyers
为众多单位需求买家提供多买机制
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shuchi Chawla;Rojin Rezvan;Yifeng Teng;Christos Tzamos - 通讯作者:
Christos Tzamos
Buy-many mechanisms
多买机制
- DOI:
10.1145/3440959.3440963 - 发表时间:
2020 - 期刊:
- 影响因子:1
- 作者:
Shuchi Chawla;Yifeng Teng;Christos Tzamos - 通讯作者:
Christos Tzamos
Shuchi Chawla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuchi Chawla', 18)}}的其他基金
AF: Small: New Directions for Simplicity versus Optimality in Mechanism Design
AF:小:机构设计中简单性与最优性的新方向
- 批准号:
2225259 - 财政年份:2021
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
AF: Small: New Directions for Simplicity versus Optimality in Mechanism Design
AF:小:机构设计中简单性与最优性的新方向
- 批准号:
2008006 - 财政年份:2020
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
AF: Small: New Directions in Algorithmic Mechanism Design
AF:小:算法机制设计的新方向
- 批准号:
1617505 - 财政年份:2016
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
ICES: Large: Collaborative Research: Towards Realistic Mechanisms: statistics, inference, and approximation in simple Bayes-Nash implementation
ICES:大型:协作研究:走向现实机制:简单贝叶斯-纳什实现中的统计、推理和近似
- 批准号:
1101429 - 财政年份:2011
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
Collaborative Research: Mechanism Design and Approximation
合作研究:机制设计与近似
- 批准号:
0830494 - 财政年份:2008
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
CAREER: Approximation Algorithms for Optimization under Uncertainty
职业:不确定性下优化的近似算法
- 批准号:
0643763 - 财政年份:2007
- 资助金额:
$ 35.42万 - 项目类别:
Continuing Grant
相似海外基金
EAGER: Algorithms for Analyzing Faulty Data Using Domain Information
EAGER:使用域信息分析错误数据的算法
- 批准号:
2414736 - 财政年份:2024
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
XTRIPODS: Algorithms and Machine Learning in Data Intensive Models
XTRIPODS:数据密集型模型中的算法和机器学习
- 批准号:
2342527 - 财政年份:2024
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
CAREER: Data Structures and Streaming Algorithms
职业:数据结构和流算法
- 批准号:
2339942 - 财政年份:2024
- 资助金额:
$ 35.42万 - 项目类别:
Continuing Grant
Data-Driven Algorithms for Data Acquisition
用于数据采集的数据驱动算法
- 批准号:
EP/Y037200/1 - 财政年份:2024
- 资助金额:
$ 35.42万 - 项目类别:
Research Grant
RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
- 批准号:
2327456 - 财政年份:2024
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
ATD: Efficient and Effective Algorithms for Detection of Anomalies in High-dimensional Spatiotemporal Data with Large Amounts of Missing Data
ATD:高效且有效的高维时空数据异常检测算法
- 批准号:
2318925 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Continuing Grant