CAREER: Approximation Algorithms for Optimization under Uncertainty

职业:不确定性下优化的近似算法

基本信息

  • 批准号:
    0643763
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-03-15 至 2013-02-28
  • 项目状态:
    已结题

项目摘要

Most optimization problems arising in practice involve uncertainty: some parameters of interest may arise from a future process (such as market forces affecting the demand for a good), or from an imprecise measurement, or may be ``fudged'' on purpose in the interest of privacy. However, one can usually obtain some limited distributional information about such parameters, such as through past observations of the same process or by repeated measurements. How can this limited information be utilized to find solutions to the optimization problem that mostly work well? This question forms the crux of stochastic optimization. Recent theoretical work has introduced novel techniques for dealing with uncertainty, as well as exposed challenges unique to stochastic optimization. A primary focus of this research is to further this theory of approximability of stochastic optimization problems.The PI will investigate optimization problems arising in scheduling, robot motion planning, network design, and resource allocation, with emphasis on the following issues: (1) How, and for what problems, can we transform algorithms that work well in the full-information setting to those that work well in the stochastic setting?; (2) How much information do we require about input distributions in order to obtain a good approximation?; (3) Optimal solutions to multi-stage stochastic problems can be complex exponential-size decision diagrams. For which problems can such complex solutions be approximated by much simpler ones?; (4) For which multi-stage stochastic problems is it inherently hard to obtain approximation factors independent of the number of stages? Another area of focus for this project is the design of approximately optimal algorithms for Bayesian mechanism design and pricing problems arising in contexts such as online retailing and sponsored search auctions. This research program will involve students at all levels, including undergraduate projects aimed at experimentally evaluating algorithms. In addition, the PI plans to revamp algorithms courses at the University of Wisconsin-Madison, adding new undergraduate course content related to practical applications of algorithms, and new graduate courses based on advanced applications of algorithms such as algorithmic game theory.
在实践中出现的大多数优化问题涉及不确定性:一些感兴趣的参数可能来自未来的过程(如影响商品需求的市场力量),或来自不精确的测量,或可能是为了隐私而故意“捏造”的。然而,人们通常可以获得关于这些参数的一些有限的分布信息,例如通过过去对同一过程的观察或通过重复测量。如何利用这些有限的信息来找到最优化问题的解决方案?这个问题是随机最优化问题的关键。最近的理论工作引入了新的技术来处理不确定性,以及暴露的挑战,独特的随机优化。本研究的一个主要重点是进一步的随机优化问题的近似性理论,PI将调查调度,机器人运动规划,网络设计和资源分配中出现的优化问题,重点是以下问题:(1)如何,以及对于什么问题,我们可以转换算法,以及在全信息设置的随机设置?; (2)为了得到一个好的近似值,我们需要多少关于输入分布的信息?(3)多阶段随机问题的最优解可以是复杂的指数大小决策图。哪些问题的复杂解可以用简单得多的解来近似?(4)对于哪种多阶段随机问题,要获得与阶段数无关的近似因子本身就很困难?该项目的另一个重点领域是贝叶斯机制设计和定价问题的近似最优算法的设计,如在线零售和赞助搜索拍卖。该研究项目将涉及各个级别的学生,包括旨在实验评估算法的本科项目。此外,PI计划修改威斯康星大学麦迪逊分校的算法课程,增加与算法实际应用相关的新本科课程内容,以及基于算法博弈论等算法高级应用的新研究生课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuchi Chawla其他文献

Pricing randomized allocations
随机分配定价
  • DOI:
    10.1137/1.9781611973075.49
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Briest;Shuchi Chawla;Robert D. Kleinberg;S. Weinberg;A. P. Sloan;Foundation Fellowship
  • 通讯作者:
    Foundation Fellowship
Mechanism design for data science
数据科学的机制设计
Visions in Theoretical Computer Science: A Report on the TCS Visioning Workshop 2020
理论计算机科学的愿景:2020 年 TCS 愿景研讨会报告
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuchi Chawla;Jelani Nelson;C. Umans;David Woodruff
  • 通讯作者:
    David Woodruff
Countering Value Uncertainty via Refunds: A Mechanism Design Approach
通过退款应对价值不确定性:一种机制设计方法
  • DOI:
    10.2139/ssrn.4561235
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Alaei;Shuchi Chawla;A. Makhdoumi;Azarakhsh Malekian
  • 通讯作者:
    Azarakhsh Malekian
Buy-Many Mechanisms for Many Unit-Demand Buyers
为众多单位需求买家提供多买机制

Shuchi Chawla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shuchi Chawla', 18)}}的其他基金

AF: Small: New Directions for Simplicity versus Optimality in Mechanism Design
AF:小:机构设计中简单性与最优性的新方向
  • 批准号:
    2225259
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF: Small: New Directions for Simplicity versus Optimality in Mechanism Design
AF:小:机构设计中简单性与最优性的新方向
  • 批准号:
    2008006
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF: Small: New Directions in Algorithmic Mechanism Design
AF:小:算法机制设计的新方向
  • 批准号:
    1617505
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Approximation Algorithms for Data Networks
数据网络的近似算法
  • 批准号:
    1320854
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
ICES: Large: Collaborative Research: Towards Realistic Mechanisms: statistics, inference, and approximation in simple Bayes-Nash implementation
ICES:大型:协作研究:走向现实机制:简单贝叶斯-纳什实现中的统计、推理和近似
  • 批准号:
    1101429
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanism Design and Approximation
合作研究:机制设计与近似
  • 批准号:
    0830494
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Optimal Approximation Algorithms in High Dimensions
职业:高维最优逼近算法
  • 批准号:
    1848508
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: New Mathematical Programming Techniques in Approximation and Online Algorithms
职业:近似和在线算法中的新数学编程技术
  • 批准号:
    1750127
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Beyond Worst-Case Analysis: New Approaches in Approximation Algorithms and Machine Learning
职业:超越最坏情况分析:近似算法和机器学习的新方法
  • 批准号:
    1652491
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Approximation Algorithms via SDP hierarchies
职业:通过 SDP 层次结构的近似算法
  • 批准号:
    1651861
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Pursuing New Tools for Approximation Algorithms
职业:追求近似算法的新工具
  • 批准号:
    1552097
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Metric Geometry Techniques for Approximation Algorithms
职业:近似算法的度量几何技术
  • 批准号:
    1150062
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Optimization Models and Approximation Algorithms for Network Vulnerability and Adaptability
职业:网络脆弱性和适应性的优化模型和近似算法
  • 批准号:
    0953284
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Approximation Algorithms and Hardness of Network Optimization Problems
职业:网络优化问题的近似算法和难度
  • 批准号:
    0844872
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Approximation Algorithms - New Directions and Techniques
职业:近似算法 - 新方向和技术
  • 批准号:
    0237113
  • 财政年份:
    2003
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Approximation Algorithms for Geometric Computing
职业:几何计算的近似算法
  • 批准号:
    0132901
  • 财政年份:
    2002
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了