Exceeding the Limit in Solar Energy Conversion with Exciton Fission
利用激子裂变突破太阳能转换极限
基本信息
- 批准号:1321405
- 负责人:
- 金额:$ 45.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical Description: The maximum solar-to-electric power conversion efficiency of a conventional solar cell is determined by the Shockley-Queisser limit of about 31%, which comes from the loss of excess energies in hot electrons and holes created from the absorption of photons with energies above the semiconductor bandgap. A viable approach to exceed this limit is to create two electron-hole pairs from the absorption of one photon in a process called exciton fission. Exciton fission has attracted renewed interest because of the great potential of designing molecules for optimal fission yields. To successfully implement exciton fission for solar energy conversion, the PI and his students are addressing three fundamental questions: 1) What are the physical principles that govern optimal exciton fission yield? 2) How does efficient energy transfer occur at organic semiconductor interfaces for singlet and triplet excitons? 3) What is the best strategy to harvest multiple carriers from singlet fission? The research team uses model organic semiconductors with varying energetics or with different degrees of crystallinity to address the roles of coherent electronic coupling vs. thermal activation and to probe the effect of electronic delocalization in exciton fission. The team also uses model organic semiconductor interfaces to probe energy transfer and charge transfer. All these experiments serve to establish fundamental principles in the implementation of exciton fission for efficient solar energy conversion.Non-technical Description: In addition to new scientific discoveries and developments that will form the foundation of future solar energy conversion technologies with much improved efficiency, this project also provides an excellent educational opportunity for the training of the future high-tech workforce. The educational and outreach activities consist of three major parts: 1) supervising K-12 students in solar energy research within the Welch Foundation Summer Scholar program and as a member of the West Lake High school's Independent Study Mentorship program; 2) collaboration with emerging solar industries, in particular, with Konarka Technologies, Inc., a pioneer and leader in polymer based photovoltaics; and 3) developing new undergraduate curriculum on solar energy, which serves to prepare students for the emerging job market in the solar energy economy.
技术描述:传统太阳能电池的最大太阳能-电能转换效率由约31%的肖克利-奎瑟极限决定,这是由于吸收能量高于半导体带隙的光子而产生的热电子和空穴中多余能量的损失。超越这个极限的可行方法是在一个称为激子裂变的过程中,通过吸收一个光子来产生两个电子-空穴对。激子裂变已经引起了新的兴趣,因为设计分子的最佳裂变产量的巨大潜力。为了成功地实现激子裂变太阳能转换,PI和他的学生正在解决三个基本问题:1)控制最佳激子裂变产量的物理原理是什么?2)在有机半导体界面上,单重态和三重态激子是如何发生有效的能量传递的?3)从单线态裂变中获得多载流子的最佳策略是什么?研究小组使用不同能量学或不同结晶度的模型有机半导体来解决相干电子耦合与热激活的作用,并探索电子离域在激子裂变中的影响。该团队还使用模型有机半导体界面来探测能量转移和电荷转移。所有这些实验都有助于建立有效转换太阳能的激子裂变的基本原理。非技术描述:除了新的科学发现和发展将形成未来太阳能转换技术的基础,并大大提高效率外,该项目还为培训未来的高科技劳动力提供了极好的教育机会。教育和推广活动包括三个主要部分:1)在韦尔奇基金会暑期学者项目中指导K-12学生进行太阳能研究,并作为西湖高中独立学习导师项目的成员;2)与新兴太阳能产业合作,特别是与Konarka Technologies, Inc.合作,该公司是聚合物光伏技术的先驱和领导者;3)开发新的太阳能本科课程,为学生在太阳能经济中新兴的就业市场做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoyang Zhu其他文献
Photoemission from excitons in organic semiconductors
有机半导体中激子的光电子发射
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xiaoyang Zhu - 通讯作者:
Xiaoyang Zhu
Controlled Synthesis and Room-temperature Pyroelectricity of CuInP2S6 Ultrathin Flakes
CuInP2S6超薄薄片的控制合成及室温热释电性能
- DOI:
10.1016/j.nanoen.2019.01.085 - 发表时间:
2019 - 期刊:
- 影响因子:17.6
- 作者:
Lin Niu;Fucai Liu;Qingsheng Zeng;Xiaoyang Zhu;Yanlong Wang;Peng Yu;Jia Shi;Junhao Lin;Jiadong Zhou;Qundong Fu;Wu Zhou;Ting Yu;Xinfeng Liu;Zheng Liu - 通讯作者:
Zheng Liu
超高速分光で検出する分子性材料の超高速電子/構造ダイナミクス
超快光谱检测分子材料的超快电子/结构动力学
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
宮田 潔志;Xiaoyang Zhu;恩田 健 - 通讯作者:
恩田 健
Electronic structure and electron dynamics at molecule?metal interfaces: implications for molecule-based electronics
- DOI:
10.1016/j.surfrep.2004.09.002 - 发表时间:
2004-11 - 期刊:
- 影响因子:9.8
- 作者:
Xiaoyang Zhu - 通讯作者:
Xiaoyang Zhu
Alkoxyl monolayers as anti-stiction coatings in Si-based MEMS devices
烷氧基单层作为硅基 MEMS 器件中的抗粘连涂层
- DOI:
10.1163/15685610360554438 - 发表时间:
2003 - 期刊:
- 影响因子:2.3
- 作者:
Yongseok Jun;Xiaoyang Zhu - 通讯作者:
Xiaoyang Zhu
Xiaoyang Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoyang Zhu', 18)}}的其他基金
NSF/DMR-BSF: Auger Recombination in Two-Dimensional Quantum Confined Semiconductors
NSF/DMR-BSF:二维量子限制半导体中的俄歇复合
- 批准号:
1809680 - 财政年份:2018
- 资助金额:
$ 45.23万 - 项目类别:
Standard Grant
OP: Momentum Conservation in Optoelectronic Processes at 2D Van der Waals Semiconductor Heterojunctions
OP:二维范德华半导体异质结光电过程中的动量守恒
- 批准号:
1608437 - 财政年份:2016
- 资助金额:
$ 45.23万 - 项目类别:
Standard Grant
SOLAR Collaborative: Designing and modeling advanced nanostructure based hybrid solar cells
SOLAR Collaborative:基于先进纳米结构的混合太阳能电池的设计和建模
- 批准号:
1311770 - 财政年份:2013
- 资助金额:
$ 45.23万 - 项目类别:
Standard Grant
Dynamic Self-Assembly of Glycolipids for Unveiling Complex Glycan-Protein Interactions
糖脂的动态自组装揭示复杂的聚糖-蛋白质相互作用
- 批准号:
1312646 - 财政年份:2013
- 资助金额:
$ 45.23万 - 项目类别:
Standard Grant
Dynamic Self-Assembly of Glycolipids for Unveiling Complex Glycan-Protein Interactions
糖脂的动态自组装揭示复杂的聚糖-蛋白质相互作用
- 批准号:
1152772 - 财政年份:2012
- 资助金额:
$ 45.23万 - 项目类别:
Standard Grant
Exceeding the Limit in Solar Energy Conversion with Exciton Fission
利用激子裂变突破太阳能转换极限
- 批准号:
1207254 - 财政年份:2012
- 资助金额:
$ 45.23万 - 项目类别:
Standard Grant
SOLAR Collaborative: Designing and modeling advanced nanostructure based hybrid solar cells
SOLAR Collaborative:基于先进纳米结构的混合太阳能电池的设计和建模
- 批准号:
1125845 - 财政年份:2011
- 资助金额:
$ 45.23万 - 项目类别:
Standard Grant
Exciton Dissociation Dynamics at Organic-Organic and Organic-Inorganic Semiconductor Heterojunctions
有机-有机和有机-无机半导体异质结的激子解离动力学
- 批准号:
0946346 - 财政年份:2009
- 资助金额:
$ 45.23万 - 项目类别:
Continuing Grant
Exciton Dissociation Dynamics at Organic-Organic and Organic-Inorganic Semiconductor Heterojunctions
有机-有机和有机-无机半导体异质结的激子解离动力学
- 批准号:
0804583 - 财政年份:2008
- 资助金额:
$ 45.23万 - 项目类别:
Continuing Grant
US-Germany Cooperative Research: Understanding Molecular Electronics from Spectroscopy - A Step Towards Rational Design
美德合作研究:从光谱学中了解分子电子学——迈向理性设计的一步
- 批准号:
0340669 - 财政年份:2004
- 资助金额:
$ 45.23万 - 项目类别:
Standard Grant
相似海外基金
Uniting Singlet Fission and Multidimensional Perovskites for Solar Cells with Efficiencies Exceeding the Thermodynamic Limit
将单线态裂变和多维钙钛矿结合起来用于太阳能电池,效率超过热力学极限
- 批准号:
545505-2020 - 财政年份:2021
- 资助金额:
$ 45.23万 - 项目类别:
Postdoctoral Fellowships
Uniting Singlet Fission and Multidimensional Perovskites for Solar Cells with Efficiencies Exceeding the Thermodynamic Limit
将单线态裂变和多维钙钛矿结合起来用于太阳能电池,效率超过热力学极限
- 批准号:
545505-2020 - 财政年份:2020
- 资助金额:
$ 45.23万 - 项目类别:
Postdoctoral Fellowships
EAGER: Collaborative Research: Cold vapor generation beyond the input solar energy limit and its condensation using thermal radiation
EAGER:合作研究:超出输入太阳能限制的冷蒸汽生成及其利用热辐射的冷凝
- 批准号:
1932968 - 财政年份:2019
- 资助金额:
$ 45.23万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Cold vapor generation beyond the input solar energy limit and its condensation using thermal radiation
EAGER:合作研究:超出输入太阳能限制的冷蒸汽生成及其利用热辐射的冷凝
- 批准号:
1932843 - 财政年份:2019
- 资助金额:
$ 45.23万 - 项目类别:
Standard Grant
Uniting Singlet Fission and Multidimensional Perovskites for Solar Cells with Efficiencies Exceeding the Thermodynamic Limit
将单线态裂变和多维钙钛矿结合起来用于太阳能电池,效率超过热力学极限
- 批准号:
545505-2020 - 财政年份:2019
- 资助金额:
$ 45.23万 - 项目类别:
Postdoctoral Fellowships
Hot charge carriers in tin-based perovskite solar cells to exceed the Shockley-Queisser limit
锡基钙钛矿太阳能电池中的热载流子将超过肖克利-奎瑟极限
- 批准号:
408012143 - 财政年份:2018
- 资助金额:
$ 45.23万 - 项目类别:
Research Fellowships
Ultrafast multiexciton kinetics in solar photovoltaics beyond the Shockley-Queisser limit
超越肖克利-奎瑟极限的太阳能光伏超快多激子动力学
- 批准号:
1520949 - 财政年份:2014
- 资助金额:
$ 45.23万 - 项目类别:
Standard Grant
Investigation into a graphene ultra-flat lens array for silicon solar cells breaking the Shockley-Queisser efficiency limit
研究用于硅太阳能电池的石墨烯超平坦透镜阵列,突破 Shockley-Queisser 效率限制
- 批准号:
DP140100849 - 财政年份:2014
- 资助金额:
$ 45.23万 - 项目类别:
Discovery Projects
Ultrafast multiexciton kinetics in solar photovoltaics beyond the Shockley-Queisser limit
超越肖克利-奎瑟极限的太阳能光伏超快多激子动力学
- 批准号:
1438147 - 财政年份:2014
- 资助金额:
$ 45.23万 - 项目类别:
Standard Grant
Quantum dot-sensitised solar cells: can efficiency beyond the Shockley-Queisser limit be achieved?
量子点敏化太阳能电池:能否实现超越Shockley-Queisser极限的效率?
- 批准号:
FT120100674 - 财政年份:2012
- 资助金额:
$ 45.23万 - 项目类别:
ARC Future Fellowships