Ultrafast multiexciton kinetics in solar photovoltaics beyond the Shockley-Queisser limit

超越肖克利-奎瑟极限的太阳能光伏超快多激子动力学

基本信息

  • 批准号:
    1520949
  • 负责人:
  • 金额:
    $ 33.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Principal Investigator: Chee Wei WongNumber: 1438147The sun represents the most abundant potential source of pollution-free energy on earth. Solar cells for producing electricity require materials that absorb the sun's energy and convert its photons to electrons, a process called photovoltaics. To be competitive with fossil fuels, the cost of solar photovoltaic (PV) systems must be reduced, which is realized in part by increasing the solar energy conversion efficiency and by reducing the cost of solar PV materials. Recently, new photovoltaic materials have been discovered that harness the quantum physics behavior of inorganic semiconductor compounds ordered at the nanoscale to increase the solar energy conversion efficiency. The discovery of new and inexpensive materials for this next generation of photovoltaic devices is enabled by fundamental understanding of the interaction of light with these materials. The goal of this project is to develop a fundamental understanding of quantum physics processes in nanostructured photovoltaic materials which convert a single photon from light into multiple electrons, and thus surpass the single electron Shockley Queisser limit. The research will make use of advanced spectroscopic techniques which can probe multiexciton generation processes at ultrafast scales. Educational activities offered by the project focus on the development of a series of teaching and laboratory modules on solar energy, nanoscience, and sustainable energy, with content targeted separately to grade-school level students, low income, college-bound high school students in the New York City area, and undergraduate students at Columbia University.Technical DescriptionThe overall goal of this project is to develop a fundamental understanding of multi-exciton generation in nanostructured photovoltaic materials. The proposed research will study ultrafast multiexciton kinetics and generation in zero-dimensional and surface-modified nanostructures, as well as ultrafast multiexciton kinetics and collection in one-dimensional nanostructures and assemblies. This information will be used to harness multiexciton energy and electron transfer processes in nanostructured photovoltaics for improved solar energy conversion efficiency. Super-continuum ultrafast spectroscopy will be used to probe multiexciton kinetics and multiexciton efficiencies in semiconducting nanocrystals, nanorods, and nanostructures to elucidate the fundamental mechanisms. These studies will be extended to examine exciton and electron transfer of nanostructures in transparent high-mobility graphene electrode photovoltaics, using time- and spectrally-resolved studies and fast exciton quenching through blinking statistics of single nanostructures. Educational and outreach activities offered by the project focus on the development and delivery of a series of teaching and laboratory modules on solar energy, nanoscience, and sustainable energy, with content targeted separately to grade-school level students, low income, college-bound high school students in the New York City area, and undergraduate students at Columbia University.
首席研究员:黄志伟号码:1438147太阳代表着地球上最丰富的潜在无污染能源。用于发电的太阳能电池需要吸收太阳能量并将其光子转化为电子的材料,这一过程被称为光伏发电。为了与化石燃料竞争,必须降低太阳能光伏(PV)系统的成本,这部分是通过提高太阳能转换效率和降低太阳能光伏材料的成本来实现的。近年来,人们发现了利用纳米级无机半导体化合物的量子物理行为来提高太阳能转换效率的新型光伏材料。通过对光与这些材料相互作用的基本理解,新一代光伏设备的新材料和廉价材料的发现成为可能。该项目的目标是对纳米结构光伏材料中的量子物理过程有一个基本的理解,这些材料将单个光子从光转化为多个电子,从而超越单电子Shockley Queisser极限。这项研究将利用先进的光谱技术,在超快尺度上探测多激子的产生过程。该项目提供的教育活动侧重于开发一系列关于太阳能、纳米科学和可持续能源的教学和实验室模块,内容分别针对小学水平的学生、纽约地区低收入、即将上大学的高中生和哥伦比亚大学的本科生。技术描述:该项目的总体目标是对纳米结构光伏材料中的多激子产生有一个基本的了解。本研究将研究零维和表面修饰纳米结构中的超快多激子动力学和产生,以及一维纳米结构和组件中的超快多激子动力学和收集。这些信息将用于利用纳米结构光伏电池中的多激子能量和电子转移过程,以提高太阳能转换效率。超连续超快光谱将用于探测半导体纳米晶体、纳米棒和纳米结构中的多激子动力学和多激子效率,以阐明其基本机制。这些研究将扩展到透明高迁移率石墨烯电极光伏中纳米结构的激子和电子转移,使用时间和光谱分辨研究以及通过单个纳米结构的闪烁统计快速激子猝灭。该项目提供的教育和推广活动侧重于开发和提供一系列关于太阳能、纳米科学和可持续能源的教学和实验室模块,内容分别针对小学水平的学生、纽约地区低收入、即将上大学的高中生和哥伦比亚大学的本科生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chee Wei Wong其他文献

Free-space terabit/s coherent optical links via platicon frequency microcombs
  • DOI:
    10.1186/s43593-025-00082-0
  • 发表时间:
    2025-05-20
  • 期刊:
  • 影响因子:
    32.100
  • 作者:
    Wenting Wang;Hao Liu;Jiagui Wu;James F. McMillan;Dong IL Lee;Futai Hu;Wenzheng Liu;Jinghui Yang;Hangbo Yang;Abhinav Kumar Vinod;Yahya H. Ezzeldin;Christina Fragouli;Mingbin Yu;Patrick Guo-Qiang Lo;Dim-Lee Kwong;Devin S. Kahrs;Ninghua Zhu;Chee Wei Wong
  • 通讯作者:
    Chee Wei Wong
Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs
芯片级色散管理频率微梳的实时过渡动力学和稳定性
  • DOI:
    10.1038/s41377-020-0290-3
  • 发表时间:
    2020-04-03
  • 期刊:
  • 影响因子:
    23.400
  • 作者:
    Yongnan Li;Shu-Wei Huang;Bowen Li;Hao Liu;Jinghui Yang;Abhinav Kumar Vinod;Ke Wang;Mingbin Yu;Dim-Lee Kwong;Hui-Tian Wang;Kenneth Kin-Yip Wong;Chee Wei Wong
  • 通讯作者:
    Chee Wei Wong
Block-MDS QC-LDPC Codes for Information Reconciliation in Key Distribution
用于密钥分配中信息协调的块 MDS QC-LDPC 码
  • DOI:
    10.48550/arxiv.2403.00192
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lev Tauz;Debarnab Mitra;Jayanth Shreekumar;M. Sarihan;Chee Wei Wong;Lara Dolecek
  • 通讯作者:
    Lara Dolecek
Dispersion-managed Hong-Ou-Mandel revival via a biphoton frequency comb
通过双光子频率梳进行色散管理的红欧曼德尔复兴
Interdisciplinary advances in microcombs: bridging physics and information technology
  • DOI:
    10.1186/s43593-024-00071-9
  • 发表时间:
    2024-10-10
  • 期刊:
  • 影响因子:
    32.100
  • 作者:
    Bai-Cheng Yao;Wen-Ting Wang;Zhen-Da Xie;Qiang Zhou;Teng Tan;Heng Zhou;Guang-Can Guo;Shi-Ning Zhu;Ning-Hua Zhu;Chee Wei Wong
  • 通讯作者:
    Chee Wei Wong

Chee Wei Wong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chee Wei Wong', 18)}}的其他基金

SWIFT: Coexisting spectrally-dense communications and passive sensing in directed multi-hop sub-millimeter-wave networks
SWIFT:在定向多跳亚毫米波网络中共存频谱密集通信和无源传感
  • 批准号:
    2229560
  • 财政年份:
    2022
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
NRT-QISE: Accelerating Interdisciplinary Frontiers in Quantum Sciences and Technologies (AIF-Q)
NRT-QISE:加速量子科学与技术的跨学科前沿(AIF-Q)
  • 批准号:
    2125924
  • 财政年份:
    2021
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
QuIC-TAQS: A high-dimensional multi-access scalable testbed for the interconnected quantum network
QuIC-TAQS:互连量子网络的高维多访问可扩展测试床
  • 批准号:
    2137984
  • 财政年份:
    2021
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Continuing Grant
PFI-TT: A chip-scale laser sensing module for precision navigation and metrology
PFI-TT:用于精密导航和计量的芯片级激光传感模块
  • 批准号:
    2016561
  • 财政年份:
    2020
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
SBIR Phase I: Metasurface optical elements for augmented/mixed-reality smart glasses
SBIR 第一阶段:用于增强/混合现实智能眼镜的超表面光学元件
  • 批准号:
    2015151
  • 财政年份:
    2020
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
I-Corps: Chip-scale laser ranging module for precision autonomous navigation and vehicular safety
I-Corps:用于精确自主导航和车辆安全的芯片级激光测距模块
  • 批准号:
    2029811
  • 财政年份:
    2020
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Programmable chip-scale quantum photonics platform based on frequency-comb cluster-states for multicasting quantum networks
合作研究:基于频梳簇态的可编程芯片级量子光子平台,用于多播量子网络
  • 批准号:
    1919355
  • 财政年份:
    2019
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
QII-TAQS: A Chip-Scale Spin-Photon Memory Interface with Coherence Exceeding One Second
QII-TAQS:相干性超过一秒的芯片级自旋光子存储器接口
  • 批准号:
    1936375
  • 财政年份:
    2019
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Continuing Grant
SpecEES: A spectrally-dense 650-GHz photonic wireless backhaul via secure network coding
SpecEES:通过安全网络编码的光谱密集 650 GHz 光子无线回程
  • 批准号:
    1824568
  • 财政年份:
    2018
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
A terahertz spectrometer on a chip, at the thermodynamical limits
芯片上的太赫兹光谱仪,处于热力学极限
  • 批准号:
    1810506
  • 财政年份:
    2018
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant

相似海外基金

Theoretical approach to weakly bound triplet-triplet multiexciton in intramolecular singlet fission chromophores
分子内单线裂变发色团中弱结合三线态-三线态多激子的理论方法
  • 批准号:
    2301372
  • 财政年份:
    2024
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Continuing Grant
CAS: Exploring Multiexciton Dynamics for Triplet Upconversion in Structurally Well-Defined Covalent Dimers
CAS:探索结构明确的共价二聚体中三重态上转换的多激子动力学
  • 批准号:
    2102713
  • 财政年份:
    2021
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Collaborative Research: The Impact of Mesoscale Structure on Multiexciton Dynamics of Macromolecules
合作研究:介观结构对大分子多激子动力学的影响
  • 批准号:
    2004678
  • 财政年份:
    2020
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Collaborative Research: The Impact of Mesoscale Structure on Multiexciton Dynamics of Macromolecules
合作研究:介观结构对大分子多激子动力学的影响
  • 批准号:
    2004683
  • 财政年份:
    2020
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Creation of Intramolecular Singlet Fission System Generating High-energy Multiexciton
产生高能多激子的分子内单线态裂变系统的创建
  • 批准号:
    20K15264
  • 财政年份:
    2020
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study for the spin conversion mechanism in the multiexciton generated by the singlet fission
单线态裂变产生多激子自旋转换机制研究
  • 批准号:
    19K15506
  • 财政年份:
    2019
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Three-Dimension Visualizations of Electron Spin Polarization for Elucidating Molecular Motion Effect of Geometries of Multiexciton and Charge-Separated States
电子自旋极化的三维可视化用于阐明多激子和电荷分离态几何形状的分子运动效应
  • 批准号:
    19H00888
  • 财政年份:
    2019
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Control of multiexciton relaxation process by using plasmonic nanostructures
利用等离子体纳米结构控制多激子弛豫过程
  • 批准号:
    18H01958
  • 财政年份:
    2018
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Synthetically Controlled Plasmon-Multiexciton Interaction in Semiconductor-Metal Hybrid Nanostructures
职业:半导体-金属混合纳米结构中综合控制的等离子体激子-多激子相互作用
  • 批准号:
    1554800
  • 财政年份:
    2016
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Continuing Grant
Ultrafast multiexciton kinetics in solar photovoltaics beyond the Shockley-Queisser limit
超越肖克利-奎瑟极限的太阳能光伏超快多激子动力学
  • 批准号:
    1438147
  • 财政年份:
    2014
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了