Collaborative: Full-Scale Development: Living Liquid: Creating Interactive Visualization Tools to Explore Large Ocean Datasets
协作:全面开发:Living Liquid:创建交互式可视化工具来探索大型海洋数据集
基本信息
- 批准号:1323214
- 负责人:
- 金额:$ 32.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-10-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will pioneer a critical new genre of science exhibit: interactive visualizations that engage visitors in the process of scientific inquiry. The capability to create advanced visualizations of large scale data sets in an interactive platform was developed in a prior pathways project. The interactive platform will be installed in a museum/science center setting in this full scale development project and will be assessed to determine how visitors utilize the interactive advanced visualizations of large data sets to explore for themselves, scientific issues involving the world's oceans. The display, called Living Liquid, will develop visualizations from three large data sets provided by science partners in the project involving ocean ecology, with programming of the data developed in the pathways demonstration project. The visualizations of this data will be viewed by visitors to the Exploratorium in San Francisco on an interactive display table. The data display allows users to see data elements displayed in the geographic location from which they were found. Unlike other efforts to create visual displays for the public focused on a one-way display or that require guided mediation, users of the Living Liquid platform can direct the investigation of the data themselves. Unlike a screen at home or a tablet, the display format is intended to promote interaction and dialogue among the groups that form around the display as a self-supporting form of investigation. The strength of table design is in the physical and digital interfaces built into the display that make the exploration of data appealing, intuitive and meaningful, to evoke questions and comparisons and make patterns in the data discoverable by the users. The three areas chosen for the display table from science partners in the project include: "Plankton Patterns," an adaptation of the MIT Darwin Project simulation, which is used by scientists around the world to study what types of plankton live in the oceans and why they are there. On the Viz Table, this simulation will be adapted so visitors can explore the diversity and number of plankton through real glass lenses, a unique feature of this visualization effort. "Genetic Rhythms" is based on data from the Center for Microbial Oceanography Research and Education (C-MORE) which studies what genes microscopic ocean creatures turn off and on under different environmental conditions. On the Viz Table, visitors will be able to explore the activity of different genes as the ocean conditions change throughout a day. "Ocean Tracks" uses data from the TOPP project at Stanford University, which is studying the migratory paths of large marine creatures in relation to environmental conditions. This visualization will allow visitors to follow the paths of marine creatures such as sharks, turtles, or salmon and how they correlate to conditions such as temperature gradients or ocean currents. The data displays are separate from each other because, how data is collected and studied is different for each science partner. The project will assess how the public interacts with the large data sets through the specially designed visualizations and the extent to which the visualization enhances the understanding of the data. It will also assess how viewers use the data through the interactive functions on the visualization, controlling their own explorations of real scientific data to understand and explore what the data tells them about issues of ocean ecology. The project includes scientist-led public programs using the visualizations to explore science topics and issues identified by the data through the visualization. It also includes a research study on how informal learners can use data visualizations to support self-directed or group inquiry and learning. The project provides opportunities for professional development for science, technology, engineering, and mathematics (STEM) professionals in how to use advanced visualization capabilities to communicate research methods and findings to the public and in their own work. One of the challenges in the emerging use of large data sets is bringing together computer scientists, biologists, cognitive scientists, and graphic designers to understand how to create and interpret visualizations of large data repositories. Major insights on the use of color, perception or effective interaction do not seem to extend beyond a given field. Consequently there is a need to provide opportunities for STEM professionals to learn about effective visualization techniques and user-testing and evaluation. This project provides the opportunity for cross-disciplinary professionals to share knowledge and get training while focused on a goal of creating visualization for the public.
该项目将开创一种重要的新类型的科学展览:互动可视化,让参观者参与科学探究的过程。在交互式平台中创建大规模数据集的高级可视化的能力是在先前的途径项目中开发的。互动平台将安装在这个全面开发项目的博物馆/科学中心环境中,并将进行评估,以确定参观者如何利用大型数据集的交互式高级可视化来自行探索涉及世界海洋的科学问题。该展示名为Living Liquid,将从涉及海洋生态的项目中的科学合作伙伴提供的三个大型数据集开发可视化,并对路径示范项目中开发的数据进行编程。这些数据的可视化将被访问者在旧金山弗朗西斯科的探索馆的交互式显示表上查看。数据显示允许用户查看数据元素显示在其被发现的地理位置。与其他为公众创建视觉显示的努力不同,这些视觉显示专注于单向显示或需要引导调解,Living Liquid平台的用户可以自己指导数据的调查。 与家里的屏幕或平板电脑不同,显示格式旨在促进围绕显示器形成的群体之间的互动和对话,作为一种自我支持的调查形式。表格设计的优势在于内置于显示器中的物理和数字界面,这些界面使数据的探索具有吸引力,直观和有意义,可以引发问题和比较,并使用户可以理解数据中的模式。从该项目的科学合作伙伴中选择的三个区域包括:“浮游生物模式”,这是麻省理工学院达尔文项目模拟的改编,世界各地的科学家使用它来研究海洋中生活的浮游生物类型以及它们为什么在那里。在Viz Table上,这种模拟将被调整,以便游客可以通过真实的玻璃镜头探索浮游生物的多样性和数量,这是这种可视化工作的独特之处。“遗传节律”是基于微生物海洋学研究和教育中心(C-MORE)的数据,该中心研究了在不同环境条件下微生物海洋生物关闭和打开的基因。在Viz Table上,参观者将能够探索不同基因的活动,因为海洋条件在一天中不断变化。“海洋轨迹”使用了来自斯坦福大学TOPP项目的数据,该项目正在研究大型海洋生物与环境条件的关系。这种可视化将允许游客跟随鲨鱼,海龟或鲑鱼等海洋生物的路径,以及它们如何与温度梯度或洋流等条件相关联。 数据显示彼此独立,因为每个科学合作伙伴的数据收集和研究方式都不同。 该项目将评估公众如何通过专门设计的可视化与大型数据集互动,以及可视化在多大程度上增强了对数据的理解。它还将评估观众如何通过可视化的互动功能使用数据,控制他们自己对真实的科学数据的探索,以了解和探索数据告诉他们的海洋生态问题。该项目包括科学家领导的公共项目,使用可视化来探索科学主题和通过可视化数据识别的问题。 它还包括一项关于非正式学习者如何使用数据可视化来支持自我导向或小组探究和学习的研究。该项目为科学,技术,工程和数学(STEM)专业人员提供了专业发展的机会,帮助他们了解如何使用先进的可视化功能向公众和自己的工作传达研究方法和发现。在使用大型数据集的新兴挑战之一是汇集计算机科学家,生物学家,认知科学家和图形设计师,以了解如何创建和解释大型数据存储库的可视化。 关于颜色、感知或有效互动的使用的主要见解似乎并没有超出给定的领域。 因此,有必要为STEM专业人员提供学习有效的可视化技术和用户测试和评估的机会。 该项目为跨学科专业人士提供了分享知识和接受培训的机会,同时专注于为公众创建可视化的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kwan-Liu Ma其他文献
Enabling interactive scientific data visualization and analysis with see-through HMDs and a large tiled display
通过透明 HMD 和大型平铺显示屏实现交互式科学数据可视化和分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ken Nagao;Yucong Ye;Chuan Wang;Issei Fujishiro;Kwan-Liu Ma - 通讯作者:
Kwan-Liu Ma
直交配置マルチディスプレイを使った錯視による裸眼立体映像生成
使用正交排列的多显示器使用视错觉生成自动立体图像
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ken Nagao;Yucong Ye;Chuan Wang;Issei Fujishiro;Kwan-Liu Ma;清水文也,藤代一成;小林杏理,藤代一成;藤代一成;藤代一成;斎藤英雄,茂木健一郎,木村聡貴,三上弾,今井倫太,藤代一成;藤代一成,井阪建;井阪建,藤代一成 - 通讯作者:
井阪建,藤代一成
コン ピュータに騙される人間の脳―バーチャルリアリティとロボットに見る
人脑被计算机欺骗:虚拟现实和机器人
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ken Nagao;Yucong Ye;Chuan Wang;Issei Fujishiro;Kwan-Liu Ma;清水文也,藤代一成;小林杏理,藤代一成;藤代一成;藤代一成;斎藤英雄,茂木健一郎,木村聡貴,三上弾,今井倫太,藤代一成 - 通讯作者:
斎藤英雄,茂木健一郎,木村聡貴,三上弾,今井倫太,藤代一成
P23-045-23 Phospho-Proteomic Analysis of Insulin Signaling in Cultured Podocytes Reveals Novel Signaling Networks
- DOI:
10.1016/j.cdnut.2023.100156 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Grace LeBleu;Yoshihiro Ito;Kwan-Liu Ma;Tzu-Cheing Meng;Fawaz Haj;Mingfo Hsu - 通讯作者:
Mingfo Hsu
Visual Abstraction and Exploratioin of Multi-class Scatterplots
多类散点图的视觉抽象与探索
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:5.2
- 作者:
Kun Zhou;Weifeng Chen;Wentao Gu;Kwan-Liu Ma - 通讯作者:
Kwan-Liu Ma
Kwan-Liu Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kwan-Liu Ma', 18)}}的其他基金
BIGDATA: F: Critical Visualization Technologies for Analyzing and Understanding Big Network Data
BIGDATA:F:分析和理解大网络数据的关键可视化技术
- 批准号:
1741536 - 财政年份:2017
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
III: Small: Technologies for Creating Explanatory and Exploratory Animations from Scientific Data
III:小:根据科学数据创建解释性和探索性动画的技术
- 批准号:
1528203 - 财政年份:2015
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
CGV: Small: A General Framework for Expressing, Navigating, and Querying Uncertainty in Data Analysis and Visualization Tasks
CGV:Small:用于表达、导航和查询数据分析和可视化任务中的不确定性的通用框架
- 批准号:
1320229 - 财政年份:2013
- 资助金额:
$ 32.96万 - 项目类别:
Continuing Grant
EAGER: Investigation of Techniques for Creating Storytelling Animations During Data Exploration
EAGER:在数据探索过程中创建讲故事动画的技术研究
- 批准号:
1255237 - 财政年份:2012
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
The 1st Symposium on Large Data Analysis and Visualization
第一届大数据分析与可视化研讨会
- 批准号:
1147363 - 财政年份:2011
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
Modeling the Uncertainty Due to Data/Visual Transformations Using Sensitivity Analysis
使用敏感性分析对数据/视觉转换引起的不确定性进行建模
- 批准号:
1025269 - 财政年份:2010
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
In Situ Processing and Visualization for Peta- and Exa-Scale Simulations
Peta 级和 Exa 级模拟的原位处理和可视化
- 批准号:
0850566 - 财政年份:2009
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
Visual Characterization of I/O System Behavior for High-End Computing
高端计算 I/O 系统行为的视觉表征
- 批准号:
0938114 - 财政年份:2009
- 资助金额:
$ 32.96万 - 项目类别:
Continuing Grant
Collaborative Research: Petascale Computing, Visualization, and Science Discovery of Turbulent Sooting Flames
合作研究:千万亿级计算、可视化和湍流烟灰火焰的科学发现
- 批准号:
0905008 - 财政年份:2009
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
CPA-G&V: Intelligence Augmented Visualization
CPA-G
- 批准号:
0811422 - 财政年份:2008
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
相似国自然基金
钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
- 批准号:51871067
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316159 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316160 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316157 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大规模声明性分析的全栈方法
- 批准号:
2217037 - 财政年份:2022
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大规模声明性分析的全栈方法
- 批准号:
2217036 - 财政年份:2022
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
Full-Scale Development: Collaborative Research Advancing Informal STEM Learning Through Scientific Alternate Reality Games
全面发展:通过科学的替代现实游戏推进非正式 STEM 学习的协作研究
- 批准号:
1323787 - 财政年份:2013
- 资助金额:
$ 32.96万 - 项目类别:
Continuing Grant
Full-Scale Development: Collaborative Research: NEXT: The Youth Radio Innovation Lab
全面发展:合作研究:NEXT:青年广播创新实验室
- 批准号:
1323791 - 财政年份:2013
- 资助金额:
$ 32.96万 - 项目类别:
Continuing Grant
Full-Scale Development: Collaborative Research Advancing Informal STEM Learning Through Scientific Alternate Reality Games
全面发展:通过科学的替代现实游戏推进非正式 STEM 学习的协作研究
- 批准号:
1323306 - 财政年份:2013
- 资助金额:
$ 32.96万 - 项目类别:
Continuing Grant