Collaborative Research: Self-Exfoliation as Promising Route to Novel Nanocomposite Processing

合作研究:自剥离作为新型纳米复合材料加工的有前途的途径

基本信息

  • 批准号:
    1332499
  • 负责人:
  • 金额:
    $ 18.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

The project aims to find a powerful new route towards exfoliated clay/polymer nanocomposites at high clay loading. A recently discovered self-organizing process is able to disintegrate (exfoliate) clay particles into their individual thin sheets (leaves) when being gently mixed into a suitable polymer. The phenomenon is called self-exfoliation, since no external energy input is required. In the resulting nanocomposite, the clay leaves were found to distribute uniformly throughout the polymer matrix (i.e., random leaves), which can be beneficial for many applications that require high connectivity (mechanical, electrical, and thermal). While such self-exfoliation has great potential as a novel nanocomposite synthesis process, it has not yet been applied due to the lack of a better understanding of the self-exfoliation mechanism. The planned research has the objective of explaining the origins of the self-exfoliation so that it can be utilized systematically as a new path for creating novel polymer nanocomposites at high loadings of random leaves including graphene. The synergistic expertise of the PI and co-PI will allow a full characterization of the nanocomposite formation. Diverse experimental methods will probe the four relevant length scales of this system. The macro-scale bulk properties and their mechanical evolution during exfoliation, which are most relevant industrially, will be studied through rheology. Rheology will also provide the time scales of the exfoliation dynamics and will guide the other experiments in this way. The micron-scale will be probed with optical microscopy to observe aggregate swelling and the homogeneity and randomness of the final exfoliated state. The nano-scale structure/dynamics will be observed with SAXS (small angle x-ray scattering), USAXS (ultra-SAXS), and SANS (small angle neutron scattering) to monitor clay gallery spacing and a polymer conformation anchored to a clay leaf, and AFM (atomic force microscopy) to test for the presence of an entropic-pulling force from the tethered polymer chains. The bonding at the atomic scale will be probed with NMR (nuclear magnetic resonance) spectroscopy to confirm the presence of hydrogen bonds and determine if hydrogen bonds form on the face and/or sides of a clay leaf. The initial part of the research will be guided by hypothesizing two possible self-exfoliation mechanisms and by following up with experiments on several different self-exfoliating clay/polymer systems. Based on these research findings, other self-exfoliating material combinations (graphene instead of clay; semicrystalline polymers instead of amorphous polymers) and their processing conditions will be explored. Research results from the two research groups will feed into each other and lead to a broad education of graduate and undergraduate students of the two research groups. This includes the co-PI's SAXS/WAXS beamline at the National Synchrotron Light Source, which will provide undergraduate/graduate students with an unusually broad perspective on scientific research.
该项目旨在找到一种强大的新途径,在高粘土负载下实现剥离粘土/聚合物纳米复合材料。最近发现的一种自组织过程能够将粘土颗粒在轻轻混合到合适的聚合物中时分解(剥落)成它们各自的薄片(叶子)。这种现象被称为自剥落,因为不需要外部能量输入。在所得的纳米复合材料中,发现粘土叶均匀地分布在整个聚合物基质中(即,随机叶),这对于需要高连接性(机械、电和热)的许多应用是有益的。虽然这种自剥离作为一种新型的纳米复合材料合成方法具有很大的潜力,但由于缺乏对自剥离机制的更好理解,它尚未被应用。计划中的研究的目的是解释自剥离的起源,以便它可以系统地用作在包括石墨烯在内的随机叶子的高负载下创建新型聚合物纳米复合材料的新途径。PI和co-PI的协同专业知识将允许纳米复合材料形成的全面表征。不同的实验方法将探讨这一系统的四个相关的长度尺度。将通过流变学研究剥离过程中最相关的宏观体积性质及其机械演化。流变学还将提供剥落动力学的时间尺度,并将以这种方式指导其他实验。将用光学显微镜探测微米尺度,以观察聚集体溶胀以及最终剥离状态的均匀性和随机性。纳米级结构/动力学将用SAXS(小角X射线散射)、USAXS(超SAXS)和SANS(小角中子散射)来观察,以监测粘土廊道间距和锚定到粘土叶的聚合物构象,以及AFM(原子力显微镜)来测试来自拴系的聚合物链的熵拉力的存在。将用NMR(核磁共振)光谱探测原子尺度的键合,以确认氢键的存在并确定氢键是否形成在粘土叶的表面和/或侧面上。研究的初始部分将通过假设两种可能的自剥离机制和对几种不同的自剥离粘土/聚合物系统进行实验来指导。基于这些研究结果,将探索其他自剥离材料组合(石墨烯代替粘土;半结晶聚合物代替无定形聚合物)及其加工条件。两个研究小组的研究结果将相互补充,并导致两个研究小组的研究生和本科生的广泛教育。这包括合作PI在国家同步加速器光源的SAXS/WAXS光束线,这将为本科生/研究生提供一个非常广泛的科学研究视角。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tadanori Koga其他文献

Dynamic light-scattering study of self-assembly of diblock copolymers in supercritical carbon dioxide.
超临界二氧化碳中二嵌段共聚物自组装的动态光散射研究。
  • DOI:
    10.1364/ao.40.004170
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Tadanori Koga;Shuiqin Zhou;Benjamin Chu
  • 通讯作者:
    Benjamin Chu
東北日本弧の地殻内S波反射面の分布
东北日本弧地壳中横波反射面的分布
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tadanori Koga;Mikihito Takenaka;Kazuya Aizawa;Masao Nakamura;Takeji Hashimoto;Mikihito Takenaka et al.;Mikihito Takenaka;Mikihito Takenaka;海野徳仁;堀 修一郎
  • 通讯作者:
    堀 修一郎
レーザーアブレーションプラズマの分子分光計測
激光烧蚀等离子体的分子光谱测量
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tadanori Koga;Mikihito Takenaka;Kazuya Aizawa;Masao Nakamura;Takeji Hashimoto;Mikihito Takenaka et al.;Mikihito Takenaka;Mikihito Takenaka;海野徳仁;堀 修一郎;Shuichiro HORI;三浦 英俊;T.Furukawa;N.Yonekura;松尾由賀利
  • 通讯作者:
    松尾由賀利
Temperature snd Pressure Control of Cold Heliun Gas above Liquid Helium for Laser Spectroscopy of Atoms and Molecules
液氦上冷氦气的温度和压力控制用于原子和分子激光光谱分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tadanori Koga;Mikihito Takenaka;Kazuya Aizawa;Masao Nakamura;Takeji Hashimoto;Mikihito Takenaka et al.;Mikihito Takenaka;Mikihito Takenaka;海野徳仁;堀 修一郎;Shuichiro HORI;三浦 英俊;T.Furukawa;N.Yonekura;松尾由賀利;N.Yonekura;Y.Fukuyama;Y.Matsuo
  • 通讯作者:
    Y.Matsuo
Kinetic energy of ions produced with first-,second-,and multi-shot femtosecond laser ablation on a solid surface
固体表面上第一次、第二次和多次飞秒激光烧蚀产生的离子的动能

Tadanori Koga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tadanori Koga', 18)}}的其他基金

Rubber aging at the microscopic scale
微观尺度的橡胶老化
  • 批准号:
    2210207
  • 财政年份:
    2022
  • 资助金额:
    $ 18.62万
  • 项目类别:
    Standard Grant
CAREER: Exploiting the Density Fluctuating Regime in Supercritical Fluids for Environmentally Green Polymer Surface Processing
职业:利用超临界流体中的密度波动机制进行环保聚合物表面处理
  • 批准号:
    0846267
  • 财政年份:
    2009
  • 资助金额:
    $ 18.62万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 18.62万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 18.62万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 18.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
  • 批准号:
    2329674
  • 财政年份:
    2023
  • 资助金额:
    $ 18.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
  • 批准号:
    2329675
  • 财政年份:
    2023
  • 资助金额:
    $ 18.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
  • 批准号:
    2231077
  • 财政年份:
    2023
  • 资助金额:
    $ 18.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305882
  • 财政年份:
    2023
  • 资助金额:
    $ 18.62万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
  • 批准号:
    2247880
  • 财政年份:
    2023
  • 资助金额:
    $ 18.62万
  • 项目类别:
    Continuing Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
  • 批准号:
    2409880
  • 财政年份:
    2023
  • 资助金额:
    $ 18.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Supporting Chemistry Students’ Science Practice Self-Efficacy
合作研究:支持化学学生的科学实践自我效能感
  • 批准号:
    2236032
  • 财政年份:
    2023
  • 资助金额:
    $ 18.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了