DMREF Integrating theory, computation and experiment to robustly design complex protein-based nanomaterials

DMREF 整合理论、计算和实验,稳健地设计复杂的基于蛋白质的纳米材料

基本信息

  • 批准号:
    1332907
  • 负责人:
  • 金额:
    $ 137.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2016-09-30
  • 项目状态:
    已结题

项目摘要

In this project funded by the Designing Materials to Revolutionize and Engineer our Future program of the Chemistry Division, Professors David Baker of the University of Washington and Todd Yeates of the University of California, Los Angeles will develop robust methods for the design of complex protein-based nanomaterials. The research project will integrate theory, computation, and experiment to describe the possible space of symmetric protein assemblies and develop methods for the rapid and reliable production of novel materials. An atlas of theoretical symmetric architectures will be delineated and integrated with cutting-edge protein structure modeling software to identify novel amino acid sequences predicted to self-assemble into precisely defined structures. The corresponding proteins will be produced experimentally and their structures determined at high resolution to provide feedback for the improvement of both the theoretical and computational aspects of the program. In this way, a general approach for patterning complex protein-based materials with sub-nanometer resolution will be developed that is expected to have a profound impact on the fields of molecular self-assembly and nanomaterials. Biological systems use proteins to carry out complex tasks at the molecular level. Proteins are "oligomers": they are composed of multiple chemical subunits linked together in a long chain. The chain must fold into a specific, complex shape in order for the protein to become functional. Additionally, protein units can interact to form larger structures that perform an array of chemical and mechanical functions. This research project involves a joint experimental and computational effort to design proteins that can fold and assemble into preordained structures. Long-term outcomes of this basic research could include the development of new types of medicines, materials with unprecedented properties, and other useful chemical technologies.
在这个由化学部的设计材料革命和工程师我们的未来计划资助的项目中,华盛顿大学的大卫贝克教授和洛杉矶加州大学的托德耶茨教授将开发用于设计复杂蛋白质纳米材料的可靠方法。 该研究项目将整合理论,计算和实验来描述对称蛋白质组装的可能空间,并开发快速可靠生产新材料的方法。 一个理论对称结构的图谱将被描绘并与尖端的蛋白质结构建模软件相结合,以确定预测自组装成精确定义结构的新型氨基酸序列。 相应的蛋白质将通过实验产生,并以高分辨率确定其结构,以提供反馈,用于改进该计划的理论和计算方面。 通过这种方式,将开发出一种具有亚纳米分辨率的复杂蛋白质基材料图案化的通用方法,预计将对分子自组装和纳米材料领域产生深远的影响。 生物系统使用蛋白质在分子水平上执行复杂的任务。 蛋白质是“寡聚体”:它们由多个化学亚基连接在一起形成一条长链。 链必须折叠成特定的复杂形状,以使蛋白质发挥功能。 此外,蛋白质单元可以相互作用,形成更大的结构,执行一系列化学和机械功能。 该研究项目涉及联合实验和计算工作,以设计可以折叠和组装成预定结构的蛋白质。 这一基础研究的长期成果可能包括开发新型药物、具有前所未有特性的材料以及其他有用的化学技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Baker其他文献

Designed repeat protein in complex with Fz7
设计与 Fz7 复合的重复蛋白
  • DOI:
    10.2210/pdb6ne2/pdb
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    16.8
  • 作者:
    Luke T. Dang;Y. Miao;A. Ha;Kanako Yuki;K. Park;C. Y. Janda;K. Jude;K. Mohan;N. Ha;Mario Vallon;Jenny Yuan;J. Vilches;C. Kuo;K. Garcia;David Baker
  • 通讯作者:
    David Baker
Trypanosoma cruzi adenylyl cyclase is encoded by a complex multigene family.
克氏锥虫腺苷酸环化酶由复杂的多基因家族编码。
VaxCelerate II: Rapid development of a self-assembling vaccine VaxCelerate II: Rapid development of a self-assembling vaccine for Lassa fever for Lassa fever
VaxCelerate II:快速开发拉沙热自组装疫苗 VaxCelerate II:快速开发拉沙热自组装疫苗
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pierre Leblanc;L. Moise;Cybelle Luza;Kanawat Chantaralawan;Lynchy Lezeau;Jianping Yuan;M. Field;Daniel Richer;C. Boyle;William D Martin;Jordan B Fishman;Eric A Berg;David Baker;Brandon Zeigler;Dale E Mais;William Taylor;Russell Coleman;Shaw Warren;Jeffrey A. Gelfand;A. S. D. Groot;Timothy Brauns;M. Poznansky
  • 通讯作者:
    M. Poznansky
Big History’s Big Potential
大历史的大潜力
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Grinin;David Baker;E. Quaedackers;Andrey Korotayev
  • 通讯作者:
    Andrey Korotayev
Engaging a community to focus on upper limb function in people with multiple sclerosis: the ThinkHand campaign case study
让社区关注多发性硬化症患者的上肢功能:ThinkHand 活动案例研究
  • DOI:
    10.1186/s40900-024-00586-y
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alison Thomson;Rachel Horne;Christine Chapman;Trishna Bharadia;Patrick Burke;Elizabeth Colwell;Mark Harrington;Bonnie Boskovic;Andrea M Stennett;David Baker;Gavin Giovannoni;K. Schmierer
  • 通讯作者:
    K. Schmierer

David Baker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Baker', 18)}}的其他基金

MFB: Deep-Learning Enabled Structure Prediction and Design of Protein-DNA Assemblies
MFB:深度学习支持蛋白质-DNA 组装的结构预测和设计
  • 批准号:
    2226466
  • 财政年份:
    2022
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Standard Grant
Co-production of a software tool for field-scale species distribution modelling (fs-SDM) and mapping using local biodiversity records
共同开发用于野外规模物种分布建模 (fs-SDM) 和使用当地生物多样性记录进行绘图的软件工具
  • 批准号:
    NE/V007726/1
  • 财政年份:
    2020
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Fellowship
CIBR: Collaborative Research: CIBR Expanding structure coverage of genomes to facilitate macromolecular assembly determination.
CIBR:协作研究:CIBR 扩大基因组的结构覆盖范围,以促进大分子组装测定。
  • 批准号:
    1937533
  • 财政年份:
    2019
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Standard Grant
Generation, functionalization, and distribution of de novo designed protein nanomaterials
从头设计的蛋白质纳米材料的生成、功能化和分布
  • 批准号:
    1629214
  • 财政年份:
    2016
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Standard Grant
RAPID: Empowering the Citizen Scientist in the Fight Against Ebolaviruses
RAPID:赋予公民科学家抗击埃博拉病毒的能力
  • 批准号:
    1523362
  • 财政年份:
    2015
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Standard Grant
I-Corps: Enterprise Rosetta Protein Modelling and Design Software on the Cloud
I-Corps:云端企业 Rosetta 蛋白质建模和设计软件
  • 批准号:
    1507114
  • 财政年份:
    2014
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Standard Grant
ERASynBio: BioMolecular Origami
ERASynBio:生物分子折纸
  • 批准号:
    1445201
  • 财政年份:
    2014
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Standard Grant
SBIR Phase II: Serious Gaming Platform for Mastering the Physician-Patient Diagnostic Interview
SBIR 第二阶段:掌握医患诊断访谈的严肃游戏平台
  • 批准号:
    1230418
  • 财政年份:
    2012
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Standard Grant
Identical Particles and Statistics in Superselection Theory
超选择理论中的相同粒子和统计
  • 批准号:
    1127260
  • 财政年份:
    2011
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Standard Grant
SBIR Phase I: Serious Gaming Platform for Mastering the Physician-Patient Diagnostic Interview
SBIR 第一阶段:掌握医患诊断访谈的严肃游戏平台
  • 批准号:
    1046589
  • 财政年份:
    2011
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Standard Grant

相似海外基金

Integrating theory and data to model evolution under a changing climate
整合理论和数据来模拟气候变化下的进化
  • 批准号:
    DP230102431
  • 财政年份:
    2024
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Discovery Projects
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密​​顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
  • 批准号:
    24K17055
  • 财政年份:
    2024
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
  • 批准号:
    2339588
  • 财政年份:
    2024
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Continuing Grant
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
  • 批准号:
    10662098
  • 财政年份:
    2023
  • 资助金额:
    $ 137.47万
  • 项目类别:
Collaborative Research: Towards a new framework for interpreting mantle deformation: integrating theory, experiments, and observations spanning seismic to convective timescales
合作研究:建立解释地幔变形的新框架:整合从地震到对流时间尺度的理论、实验和观测
  • 批准号:
    2311897
  • 财政年份:
    2022
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: Towards a new framework for interpreting mantle deformation: integrating theory, experiments, and observations spanning seismic to convective timescales
合作研究:建立解释地幔变形的新框架:整合从地震到对流时间尺度的理论、实验和观测
  • 批准号:
    2218568
  • 财政年份:
    2022
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: Towards a new framework for interpreting mantle deformation: integrating theory, experiments, and observations spanning seismic to convective timescales
合作研究:建立解释地幔变形的新框架:整合从地震到对流时间尺度的理论、实验和观测
  • 批准号:
    2218695
  • 财政年份:
    2022
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Continuing Grant
Integrating energy channels and ecological stoichiometry theory using invertebrate food webs
利用无脊椎动物食物网整合能量通道和生态化学计量理论
  • 批准号:
    559882-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Integrating Theory & Data to Uncover the Evolutionary Advantages of Recombination
职业:整合理论
  • 批准号:
    2143063
  • 财政年份:
    2022
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: Towards a new framework for interpreting mantle deformation: integrating theory, experiments, and observations spanning seismic to convective timescales
合作研究:建立解释地幔变形的新框架:整合从地震到对流时间尺度的理论、实验和观测
  • 批准号:
    2218224
  • 财政年份:
    2022
  • 资助金额:
    $ 137.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了