Aspects of Quantum Computational Universality in the Measurement-Based Models

基于测量的模型中量子计算普遍性的各个方面

基本信息

  • 批准号:
    1333903
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

This research will investigate important issues of quantum computational universality in measurement-based quantum computation (MBQC), explore connections of MBQC to ideas in statistical mechanics and condensed matter physics, and other quantum computational models. Specifically, the Affleck-Kennedy-Lieb-Tasaki (AKLT) models supply a rich playground for exploring new universal resource states and for understanding the intricate relations of quantum computational universality to percolation, spatial connectivity, magnetic order, and phase transitions in computational power. The long standing open question of the existence of a finite spectral of any two-dimensional rotationally symmetric (including AKLT) Hamiltonians is important also for the stability of generating related resource states by cooling. This will be studied with both analytic and numerical means. The research also includes searching for new types of resource states and developing model Hamiltonians whose thermal states can be used for quantum computation without the need to switch off interactions. Furthermore, this program studies how topological order can be of use to quantum computation, and conversely, how MBQC offers an efficient means to create a large class of topologically ordered states. Intellectual Merit: MBQC is one of the several models for building quantum computers. Essentially, all that is needed is a suitable highly entangled resource state to begin with and the ability to perform local measurements. This approach of realizing a quantum computer is promising with several physical systems, such as ultracold atoms in optical lattices and photons, complementing other approaches of implementing quantum computation. MBQC also provides a conceptual framework for answering fundamental questions in quantum computation and for bridging to other areas of research. The questions that will be addressed include: (1) What entangled states can qualify as an universal resource and can they arise as unique ground states of physically reasonable Hamiltonians? A complete understanding may lead to novel characterization of states of matter in terms of computational capability. (2) Is there a generalized Haldane conjecture in higher dimensions and how to test it? Tackling the long standing open question of the spectral gaps of two-dimensional AKLT Hamiltonians will give insight to a possible generalized Haldane conjecture in 2D and pave the road for probing richer phases in isotropic spin Hamiltonians in higher dimensions. (3) Can topological order provide insight to the quest of new resource states? (4) Are there advantages over others that the MBQC model offers? The research findings of MBQC from this program will not only advance our knowledge on various aspects of quantum computation and its connection to ideas in condensed matter physics and statistical mechanics, but also have potential impact on future quantum computer technology. Broader Impacts : The PI is taking the initiative in organizing a forum for discussing scientific results in quantum information science and stimulating collaboration across disciplines at Stony Brook University. He will integrate his research on quantum computation in the courses that he is currently and will be developing for both undergraduate and graduate students. This project will also include training of a graduate student and mentoring of a postoctoral researcher.
本研究将探讨基于测量的量子计算(MBQC)中量子计算普适性的重要问题,探索MBQC与统计力学和凝聚态物理学以及其他量子计算模型的联系。具体来说,阿弗莱克-肯尼迪-利布-田崎(AKLT)模型提供了一个丰富的游乐场,用于探索新的普遍资源状态,并理解量子计算普适性与计算能力中的渗透,空间连通性,磁序和相变的复杂关系。任何二维旋转对称(包括AKLT)哈密顿量的有限谱的存在性的长期未决问题对于通过冷却产生相关资源状态的稳定性也是重要的。这将与分析和数值手段进行研究。该研究还包括寻找新类型的资源状态和开发模型哈密顿量,其热状态可用于量子计算,而无需关闭相互作用。此外,该计划还研究了拓扑序如何用于量子计算,以及MBQC如何提供一种有效的方法来创建一大类拓扑有序状态。智力优势:MBQC是构建量子计算机的几种模型之一。从本质上讲,所需要的只是一个合适的高度纠缠的资源状态开始和执行本地测量的能力。这种实现量子计算机的方法在几个物理系统中很有前途,例如光学晶格中的超冷原子和光子,补充了实现量子计算的其他方法。MBQC还提供了一个概念框架,用于回答量子计算中的基本问题,并连接到其他研究领域。将解决的问题包括:(1)什么纠缠态可以资格作为一个普遍的资源,他们可以出现作为唯一的基态的物理合理的哈密顿?一个完整的理解可能会导致新的表征的物质状态的计算能力。(2)在更高的维度中是否存在广义的Haldom猜想以及如何验证它?解决二维AKLT哈密顿量的谱隙这一长期悬而未决的问题,将使人们深入了解二维中可能的广义哈勒猜想,并为在更高维度中探测各向同性自旋哈密顿量中更丰富的相位铺平道路。(3)拓扑秩序能为探索新的资源状态提供洞察力吗?(4)MBQC模式与其他模式相比有哪些优势?该计划的MBQC研究成果不仅将促进我们对量子计算各个方面及其与凝聚态物理和统计力学思想的联系的认识,而且对未来的量子计算机技术具有潜在的影响。更广泛的影响:PI正在主动组织一个论坛,讨论量子信息科学的科学成果,并促进斯托尼布鲁克大学的跨学科合作。他将把他对量子计算的研究整合到他目前正在为本科生和研究生开发的课程中。该项目还将包括培训一名研究生和指导一名博士后研究员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tzu-Chieh Wei其他文献

Exploratory factor analysis of a precollege quantum information science and technology survey: exploring career aspiration formation and student interest
  • DOI:
    10.1140/epjqt/s40507-025-00313-w
  • 发表时间:
    2025-01-23
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Angela M. Kelly;Tzu-Chieh Wei;Dominik Schneble;Michele Darienzo
  • 通讯作者:
    Michele Darienzo
Optical wireless networks with non-orthogonal multiple access (NOMA): concept, potential issues and enhanced capacity demonstration
具有非正交多址接入(NOMA)的光无线网络:概念、潜在问题及增强容量演示
  • DOI:
    10.1016/j.optlastec.2025.112888
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Yin-He Jian;Tzu-Chieh Wei;Chi-Wai Chow
  • 通讯作者:
    Chi-Wai Chow
GaN UV MSM photodetector on porous β-SiC/(1 1 1)Si substrates
  • DOI:
    10.1016/j.sna.2008.03.013
  • 发表时间:
    2008-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Shiuan-Ho Chang;Yean-Kuen Fang;Kai-Chun Hsu;Tzu-Chieh Wei
  • 通讯作者:
    Tzu-Chieh Wei

Tzu-Chieh Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tzu-Chieh Wei', 18)}}的其他基金

Digital Quantum Simulations of Ground States and Dynamics: Analysis and Realizations
基态和动力学的数字量子模拟:分析和实现
  • 批准号:
    2310614
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Toolkit for Characterizing Noisy Quantum Processors and Windows of Quantum Advantage
用于表征噪声量子处理器和量子优势窗口的工具包
  • 批准号:
    1915165
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Aspects of Quantum Computational Universality in the Measurement-Based Models
基于测量的模型中量子计算普遍性的各个方面
  • 批准号:
    1620252
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Exploration of classical-quantum and easy-hard boundaries
经典量子和易难边界的探索
  • 批准号:
    1314748
  • 财政年份:
    2013
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    EU-Funded
Quantum Computational Advantage via Contextual Measurements
通过上下文测量获得量子计算优势
  • 批准号:
    2310567
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
  • 批准号:
    2317280
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
SBIR Phase I: Computational Fluid Dynamics Software for Quantum Computers
SBIR 第一阶段:量子计算机的计算流体动力学软件
  • 批准号:
    2318334
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
A computational efficient masking friendly post-quantum signature scheme secure to side-channel-attack
一种计算高效、屏蔽友好的后量子签名方案,可安全抵御侧信道攻击
  • 批准号:
    10045159
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Collaborative R&D
Construction of Mathematical Logic System to Verify Quantum Communication Networks and Its Quantum Computational Implications
验证量子通信网络的数学逻辑系统的构建及其量子计算意义
  • 批准号:
    22KJ1483
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Harnessing Quantum Computational Methods, Tensor Networks, and Machine Learning for Advanced Simulations in Quantum Field Theories
利用量子计算方法、张量网络和机器学习进行量子场论的高级模拟
  • 批准号:
    2876830
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Studentship
Preparing Hamiltonians for Quantum Simulation: A Computational Framework for Cartan Decomposition via Lax Dynamics
为量子模拟准备哈密顿量:通过 Lax 动力学进行嘉当分解的计算框架
  • 批准号:
    2309376
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Foundations of quantum computational advantage (FoQaCiA)
量子计算优势的基础 (FoQaCiA)
  • 批准号:
    569582-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了