CDS&E: Enabling Quantum Technology Design Optimization Using Large-Scale Quantum Information Preserving Computational Electromagnetics Methods

CDS

基本信息

  • 批准号:
    2202389
  • 负责人:
  • 金额:
    $ 41.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This project explores the development of first-of-their-kind rigorous numerical modeling techniques that can leverage large-scale scientific computing resources to improve the design process of quantum electromagnetic devices used in quantum sensing and quantum computing systems. Numerical modeling has revolutionized the design and performance of classical electromagnetic devices, like antennas and high-speed analog and digital circuits, which have contributed to revolutionary advancements in wireless communication, remote sensing, and computing systems that impact many aspects of daily life. Similarly, it is expected that advanced numerical modeling will play a key role in designing quantum sensors and quantum computers that achieve their much-anticipated potential in a broad range of areas. This includes improving individual’s well-being through faster pharmaceutical discovery and increasing national security through better logistics and encryption breaking. The developed numerical modeling techniques will support these goals by being able to explicitly account for realistic material properties and complicated physical structures of devices being designed, which has not been possible with existing state-of-the-art methods. By addressing this modeling gap, designers will be able to perform virtual prototyping and engineering optimization of practical quantum devices prior to fabrication, reducing the time and cost it will take to overcome current technical limitations. This project will also engage undergraduate and graduate students in a vertically integrated project structure that has been shown to contribute to the development of a diverse STEM workforce better than traditional research structures. This will help fill the human resource gap in the area of quantum technologies, which has been identified as an urgent national need by many government and industry groups in the United States. The new class of numerical modeling techniques developed in this research build on quantum information preserving computational electromagnetics methods. These methods describe an electromagnetic system of interest in the Hamiltonian framework to derive a continuum generalized Hermitian eigenvalue problem. Computational electromagnetics methods project the continuum one into a finite-dimensional linear system to find numerical eigenmodes. The resulting numerical eigenmodes are then used in the subsequent canonical quantization procedure and the quantum state equation to evaluate properties of non-classical photon states. These methods are theoretically and numerically well-grounded for analyzing systems with arbitrary physical layouts with the use of more sophisticated computational electromagnetics tools. This project extends these numerical methods to include interactions between quantized electromagnetic fields and various kinds of qubits (e.g., atoms or superconducting circuits), and the effects of dissipative materials on quantum coherence. These physical processes are fundamental to the operation of many experimentally popular quantum sensing and quantum computing systems. However, existing state-of-the-art modeling methods are predominantly analytical and rely on numerous approximations that involve omitting many practical features of a design to maintain a tractable theoretical model. As a result, there has been a significant knowledge gap in the design of practical quantum electromagnetic devices due in part to an inability to accurately analyze practical systems. By developing rigorous numerical modeling techniques applicable to real-world devices, this research will gain new physical insight into the performance of realistic quantum electromagnetic technologies. The outcomes of this project will help spur new developments in this important field, while also providing a set of tools for the optimization of quantum system designs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目探索了首创的严格数值建模技术的发展,这些技术可以利用大规模科学计算资源来改善量子传感和量子计算系统中使用的量子电磁器件的设计过程。数值建模已经彻底改变了经典电磁设备的设计和性能,如天线和高速模拟和数字电路,这有助于无线通信,遥感和计算系统的革命性进步,影响日常生活的许多方面。同样,预计先进的数值建模将在设计量子传感器和量子计算机方面发挥关键作用,从而在广泛的领域实现其备受期待的潜力。这包括通过更快的药物发现来改善个人福祉,并通过更好的物流和加密破解来增强国家安全。开发的数值建模技术将支持这些目标,能够明确地考虑到现实的材料特性和复杂的物理结构的设备设计,这是不可能与现有的国家的最先进的方法。通过解决这一建模差距,设计人员将能够在制造之前对实际量子器件进行虚拟原型设计和工程优化,从而减少克服当前技术限制所需的时间和成本。该项目还将使本科生和研究生参与垂直整合的项目结构,该结构已被证明有助于发展多元化的STEM劳动力,优于传统的研究结构。这将有助于填补量子技术领域的人力资源缺口,这已被美国许多政府和行业组织确定为国家的迫切需求。在这项研究中开发的一类新的数值模拟技术建立在量子信息保持计算电磁学方法。这些方法在汉密尔顿框架中描述了感兴趣的电磁系统,以推导出连续统广义埃尔米特本征值问题。计算电磁学方法将连续体模型投影到有限维线性系统中,以寻找数值本征模。然后将得到的数值本征模用于随后的正则量子化过程和量子态方程中,以评估非经典光子态的性质。这些方法在理论上和数值上都有很好的基础,可以使用更复杂的计算电磁学工具来分析具有任意物理布局的系统。该项目扩展了这些数值方法,以包括量子化电磁场和各种量子位之间的相互作用(例如,原子或超导电路),以及耗散材料对量子相干性的影响。这些物理过程是许多实验流行的量子传感和量子计算系统的操作的基础。然而,现有的最先进的建模方法主要是分析性的,并且依赖于许多近似,这些近似涉及省略设计的许多实际特征以保持易于处理的理论模型。因此,在实际量子电磁设备的设计中存在着巨大的知识差距,部分原因是无法准确分析实际系统。通过开发适用于现实世界设备的严格数值建模技术,这项研究将获得对现实量子电磁技术性能的新物理见解。该项目的成果将有助于推动这一重要领域的新发展,同时也为量子系统设计的优化提供了一套工具。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating Quantum Entanglement Using Canonical Quantization and Scattering Theory
使用规范量化和散射理论研究量子纠缠
  • DOI:
    10.23919/usnc-ursinrsm60317.2024.10464658
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhu, Jie;Na, Dong-Yeop;Chew, Weng Cho
  • 通讯作者:
    Chew, Weng Cho
A Modified Sparsified Nested Dissection Ordering Preconditioner for Discrete Exterior Calculus Solver Using Vector-Scalar Potentials
使用矢量标量势的离散外微积分求解器的改进稀疏嵌套剖分排序预调节器
Full-Wave Hamiltonian Analysis of a Coaxial-Fed 3D Microwave Cavity Resonator
同轴馈电 3D 微波腔谐振器的全波哈密顿分析
  • DOI:
    10.1109/usnc-ursi52151.2023.10238006
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moon, Soomin;Roth, Thomas E.
  • 通讯作者:
    Roth, Thomas E.
Matrix product states and numerical mode decomposition for the analysis of gauge-invariant cavity quantum electrodynamics
  • DOI:
    10.1103/physreva.107.063707
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    C. Ryu;Dong-Yeop Na;W. C. Chew
  • 通讯作者:
    C. Ryu;Dong-Yeop Na;W. C. Chew
Generalized Helmholtz Decomposition for Modal Analysis of Electromagnetic Problems in Inhomogeneous Media
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weng Chew其他文献

Weng Chew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weng Chew', 18)}}的其他基金

High Accuracy, Broadband Simulation of Complex Structures with Quantum Effects, Parallel Fast Algorithm, and Integral Equation Domain Decomposition
具有量子效应的复杂结构的高精度、宽带模拟、并行快速算法和积分方程域分解
  • 批准号:
    1818910
  • 财政年份:
    2017
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
High Accuracy, Broadband Simulation of Complex Structures with Quantum Effects, Parallel Fast Algorithm, and Integral Equation Domain Decomposition
具有量子效应的复杂结构的高精度、宽带模拟、并行快速算法和积分方程域分解
  • 批准号:
    1609195
  • 财政年份:
    2016
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
SHF: Small: INTEGRATED CIRCUITS BROADBAND MULTISCALE ANALYSIS WITH FAST ALGORITHMS
SHF:小型:利用快速算法进行集成电路宽带多尺度分析
  • 批准号:
    1218552
  • 财政年份:
    2012
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
Nonlinear Inverse Scattering Methods for Three Dimensional Objects
三维物体的非线性逆散射方法
  • 批准号:
    9906651
  • 财政年份:
    1999
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Continuing Grant
Nonlinear Inverse Scattering Methods for Large Objects
大物体的非线性逆散射方法
  • 批准号:
    9302145
  • 财政年份:
    1994
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Continuing Grant
Fast Algorithms for Wave Scattering of Large Inhomogeneous Bodies
大型非均匀物体波散射的快速算法
  • 批准号:
    9224466
  • 财政年份:
    1993
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award: Forward and Inverse Scattering Problems
总统青年研究员奖:前向和逆向散射问题
  • 批准号:
    8552891
  • 财政年份:
    1986
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Continuing Grant
CAREER: Enabling Scalable and Resilient Quantum Computer Architectures through Synergistic Hardware-Software Co-Design
职业:通过协同硬件软件协同设计实现可扩展且有弹性的量子计算机架构
  • 批准号:
    2340267
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
  • 批准号:
    2311950
  • 财政年份:
    2023
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
Software Enabling Early Quantum Advantage - SEEQA
软件实现早期量子优势 - SEEQA
  • 批准号:
    EP/Y004310/1
  • 财政年份:
    2023
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Research Grant
Software Enabling Early Quantum Advantage - SEEQA
软件实现早期量子优势 - SEEQA
  • 批准号:
    EP/Y004655/1
  • 财政年份:
    2023
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Research Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
  • 批准号:
    2311949
  • 财政年份:
    2023
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
Software Enabling Early Quantum Advantage - SEEQA
软件实现早期量子优势 - SEEQA
  • 批准号:
    EP/Y004191/1
  • 财政年份:
    2023
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Research Grant
EAGER: Quantum Manufacturing: Enabling Integrated Quantum Network Nodes
EAGER:量子制造:实现集成量子网络节点
  • 批准号:
    2240267
  • 财政年份:
    2023
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
Software and algorithms for enabling noise-aware quantum computation on near-term devices
用于在近期设备上实现噪声感知量子计算的软件和算法
  • 批准号:
    DGECR-2022-00405
  • 财政年份:
    2022
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Discovery Launch Supplement
Development of novel quantum vacuum-based electronic devices platform and enabling its microfabrication methods.
开发新型基于量子真空的电子器件平台并实现其微加工方法。
  • 批准号:
    559532-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了