Aspects of Quantum Computational Universality in the Measurement-Based Models
基于测量的模型中量子计算普遍性的各个方面
基本信息
- 批准号:1620252
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are several approaches for building quantum computers that will potentially solve problems faster than today's classical computers. One approach, called measurement-based quantum computation, requires "resource states" in order to work. Resource states can be made with quantum mechanical systems such as ions, atoms, molecules, superconducting circuits, or elementary quantum states of light called photons. Yet there are still several open questions about how to characterize resource states. This project will explore how different types of resource states are more or less resilient in the presence of noise. The project will also study how newly discovered phases in solids can be used as a resource states. The outcomes of this research project will promote progress by developing methods to characterize resources for quantum computation, and establishing intellectual connections between materials science and quantum information science. This project will also train students to develop new resources and designs for quantum computers. Quantum computers boast exponential speedup for certain tasks compared to classical computers. To realize this, designs studied here such as measurement-based models of quantum computation use local measurements on highly entangled states. Entanglement is thus a resource. However there are still several fundamental questions about this type of resource. For example, in addition to the cluster state and its generalization, it is not known what other states or other types of entanglement can support universal quantum computation. It is also important to quantify the extent to which some resource states provide more resistance to noise than others. This project will address those questions. It will also investigate if resource states can emerge from certain phases of matter. For example some states of matter recently found in condensed-matter physics possess topological order, either intrinsic or that protected by symmetry, that may serve as a resource for quantum computing. More specifically, various symmetry-protected topologically ordered states in one, two, and three spatial dimensions (and intrinsic topological order states in two dimensions) will be studied to see whether they enable quantum computation via construction of new quantum gates, or reduction by local measurement to known types of resource states. Physical properties that enable computation using these states will be characterized. Furthermore, the question of whether these resource states with certain topological properties can lead to new fault-tolerant schemes will be investigated. The outcomes of the project will establish further connections between ideas in quantum information science and condensed-matter physics, and will contribute to the challenge of completely characterizing universal resources for quantum computations. This will contribute to progress designing quantum information processing systems that can be reliably experimental realized.
有几种构建量子计算机的方法可能比今天的经典计算机更快地解决问题。 一种称为基于测量的量子计算的方法需要“资源状态”才能工作。 资源状态可以用量子力学系统,如离子、原子、分子、超导电路或称为光子的光的基本量子状态来制造。然而,关于如何描述资源状态,仍然有几个悬而未决的问题。 这个项目将探讨不同类型的资源状态在噪音存在下是如何或多或少恢复的。该项目还将研究如何将固体中新发现的相用作资源状态。该研究项目的成果将通过开发表征量子计算资源的方法,以及在材料科学和量子信息科学之间建立知识联系来促进进展。该项目还将培训学生开发量子计算机的新资源和设计。与经典计算机相比,量子计算机在某些任务上具有指数加速。为了实现这一点,这里研究的设计,如基于测量的量子计算模型,使用高度纠缠态的局部测量。因此,纠缠是一种资源。 然而,关于这种类型的资源仍然有几个基本问题。 例如,除了团簇态及其推广之外,还不知道还有什么其他态或其他类型的纠缠可以支持通用量子计算。 同样重要的是,要量化某些资源状态比其他资源状态提供更强的抗噪能力的程度。 本项目将解决这些问题。 它还将调查资源状态是否可以从物质的某些阶段出现。 例如,最近在凝聚态物理学中发现的一些物质状态具有拓扑有序性,无论是内在的还是受对称性保护的,都可以作为量子计算的资源。 更具体地说,将研究一维、二维和三维空间中的各种受保护的拓扑有序态(以及二维空间中的固有拓扑有序态),以了解它们是否能够通过构建新的量子门来实现量子计算,或者通过局部测量来减少已知类型的资源状态。物理特性,使使用这些状态的计算将被表征。此外,这些资源状态与某些拓扑性质是否可以导致新的容错方案的问题将进行调查。该项目的成果将在量子信息科学和凝聚态物理学的思想之间建立进一步的联系,并将有助于完全表征量子计算的通用资源的挑战。这将有助于设计可以可靠地实验实现的量子信息处理系统。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AKLT models on decorated square lattices are gapped
装饰方形格子上的 AKLT 模型有间隙
- DOI:10.1103/physrevb.100.094429
- 发表时间:2019
- 期刊:
- 影响因子:3.7
- 作者:Pomata, Nicholas;Wei, Tzu-Chieh
- 通讯作者:Wei, Tzu-Chieh
Detector tomography on IBM quantum computers and mitigation of an imperfect measurement
- DOI:10.1103/physreva.100.052315
- 发表时间:2019-11-13
- 期刊:
- 影响因子:2.9
- 作者:Chen, Yanzhu;Farahzad, Maziar;Wei, Tzu-Chieh
- 通讯作者:Wei, Tzu-Chieh
Quantum algorithm for spectral projection by measuring an ancilla iteratively
通过迭代测量辅助进行光谱投影的量子算法
- DOI:10.1103/physreva.101.032339
- 发表时间:2020
- 期刊:
- 影响因子:2.9
- 作者:Chen, Yanzhu;Wei, Tzu-Chieh
- 通讯作者:Wei, Tzu-Chieh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tzu-Chieh Wei其他文献
Exploratory factor analysis of a precollege quantum information science and technology survey: exploring career aspiration formation and student interest
- DOI:
10.1140/epjqt/s40507-025-00313-w - 发表时间:
2025-01-23 - 期刊:
- 影响因子:5.600
- 作者:
Angela M. Kelly;Tzu-Chieh Wei;Dominik Schneble;Michele Darienzo - 通讯作者:
Michele Darienzo
Optical wireless networks with non-orthogonal multiple access (NOMA): concept, potential issues and enhanced capacity demonstration
具有非正交多址接入(NOMA)的光无线网络:概念、潜在问题及增强容量演示
- DOI:
10.1016/j.optlastec.2025.112888 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:5.000
- 作者:
Yin-He Jian;Tzu-Chieh Wei;Chi-Wai Chow - 通讯作者:
Chi-Wai Chow
GaN UV MSM photodetector on porous β-SiC/(1 1 1)Si substrates
- DOI:
10.1016/j.sna.2008.03.013 - 发表时间:
2008-09-15 - 期刊:
- 影响因子:
- 作者:
Shiuan-Ho Chang;Yean-Kuen Fang;Kai-Chun Hsu;Tzu-Chieh Wei - 通讯作者:
Tzu-Chieh Wei
Tzu-Chieh Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tzu-Chieh Wei', 18)}}的其他基金
Digital Quantum Simulations of Ground States and Dynamics: Analysis and Realizations
基态和动力学的数字量子模拟:分析和实现
- 批准号:
2310614 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Toolkit for Characterizing Noisy Quantum Processors and Windows of Quantum Advantage
用于表征噪声量子处理器和量子优势窗口的工具包
- 批准号:
1915165 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Aspects of Quantum Computational Universality in the Measurement-Based Models
基于测量的模型中量子计算普遍性的各个方面
- 批准号:
1333903 - 财政年份:2013
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Exploration of classical-quantum and easy-hard boundaries
经典量子和易难边界的探索
- 批准号:
1314748 - 财政年份:2013
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
EU-Funded
Quantum Computational Advantage via Contextual Measurements
通过上下文测量获得量子计算优势
- 批准号:
2310567 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
- 批准号:
2317280 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
SBIR Phase I: Computational Fluid Dynamics Software for Quantum Computers
SBIR 第一阶段:量子计算机的计算流体动力学软件
- 批准号:
2318334 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
A computational efficient masking friendly post-quantum signature scheme secure to side-channel-attack
一种计算高效、屏蔽友好的后量子签名方案,可安全抵御侧信道攻击
- 批准号:
10045159 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Collaborative R&D
Construction of Mathematical Logic System to Verify Quantum Communication Networks and Its Quantum Computational Implications
验证量子通信网络的数学逻辑系统的构建及其量子计算意义
- 批准号:
22KJ1483 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Harnessing Quantum Computational Methods, Tensor Networks, and Machine Learning for Advanced Simulations in Quantum Field Theories
利用量子计算方法、张量网络和机器学习进行量子场论的高级模拟
- 批准号:
2876830 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Studentship
Preparing Hamiltonians for Quantum Simulation: A Computational Framework for Cartan Decomposition via Lax Dynamics
为量子模拟准备哈密顿量:通过 Lax 动力学进行嘉当分解的计算框架
- 批准号:
2309376 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CDS&E: Enabling Quantum Technology Design Optimization Using Large-Scale Quantum Information Preserving Computational Electromagnetics Methods
CDS
- 批准号:
2202389 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Foundations of quantum computational advantage (FoQaCiA)
量子计算优势的基础 (FoQaCiA)
- 批准号:
569582-2021 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Alliance Grants