DMREF/Collaborative Research: Computationally Driven Targeting of Advanced Thermoelectric Materials

DMREF/合作研究:计算驱动的先进热电材料靶向

基本信息

  • 批准号:
    1334351
  • 负责人:
  • 金额:
    $ 38.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

****Technical Abstract****The discovery of thermoelectric materials is the critical bottleneck limiting the widespread use of thermoelectric generators for energy harvesting. To date, the search for such materials has been challenging due to the multitude of conflicting property requirements that must be simultaneously satisfied. The proposed research addresses these challenges through a high-throughput search for materials, enabled by the continued improvements in large-scale computing and the development of a thermoelectric performance metric suitable for high-throughput calculations. High accuracy measurements of electronic structure and majority carrier transport properties will be used to validate the calculated descriptors. In support of these efforts, rapid experimental validation approaches for theory-predicted thermoelectric materials will be developed. On-the-fly data mining of the resulting experimental/theoretical property database will yield material-property relationships pointing to new target materials. The resulting techniques and software tools will be well-documented and open-access. The resulting property database will serve as the seed for a long-term central, open repository for thermoelectric materials. This research program lays the groundwork for a new, computationally driven, paradigm in thermoelectric material research.****Non-Technical Abstract****The development of advanced thermoelectric materials could have a profound impact on the nation's energy portfolio. Solar thermoelectric generators and waste heat recovery could provide a significant fraction of our electricity needs. This program will lead to the development and dissemination of a transformative methodology for the realization of new thermoelectric materials, which can be extended to other materials sub-disciplines. High throughput electronic structure calculations of known earth-abundant compounds will provide the critical descriptors to identify new materials. The veracity of these calculations will be continuously tested through experimental measurements. Adaptive data mining will be used to extract structure-property trends and organically grow the material database. In doing so, a new generation of students (community college, undergraduate, graduate, post-doc) will be trained, which are conversant with both theoretical and experimental approaches to science by immersing them in a fully integrated research program. This effort extends beyond the core students in the research group through workshops focused on integrated theory/experiment approaches to thermoelectric materials and working in a "big-data" environment. A suite of K-12 and community college outreach programs targets the recruitment of underrepresented groups in STEM. These innovative programs include teacher training modules, after school programs, and summer research opportunities for community college students.This award is supported by the Divisions of Materials Research (DMR), of Mathematical Sciences (DMS), and of Computer and Network Systems (CNS).
* 技术摘要 * 热电材料的发现是限制热电发电机广泛用于能量收集的关键瓶颈。 迄今为止,由于必须同时满足的众多相互冲突的性质要求,对此类材料的搜索一直具有挑战性。拟议的研究通过对材料的高通量搜索来解决这些挑战,这是由大规模计算的持续改进和适合高通量计算的热电性能指标的开发实现的。 电子结构和多数载流子输运性质的高精度测量将用于验证计算的描述符。为了支持这些努力,将开发理论预测热电材料的快速实验验证方法。对所得实验/理论性质数据库的即时数据挖掘将产生指向新目标材料的材料性质关系。 由此产生的技术和软件工具将有详细的记录,并开放供查阅。由此产生的属性数据库将作为热电材料长期中央开放存储库的种子。 该研究计划为热电材料研究中新的计算驱动范式奠定了基础。非技术摘要 * 先进热电材料的发展可能会对国家的能源组合产生深远的影响。太阳能热电发电机和废热回收可以提供我们电力需求的很大一部分。 该计划将导致开发和传播实现新热电材料的变革性方法,该方法可以扩展到其他材料子学科。 高通量的已知地球丰富的化合物的电子结构计算将提供关键的描述符,以确定新的材料。这些计算的准确性将通过实验测量不断得到检验。 自适应数据挖掘将用于提取结构-性能趋势,并有机地增长材料数据库。 在这样做的过程中,新一代的学生(社区学院,本科,研究生,博士后)将接受培训,这是熟悉的理论和实验方法,以科学沉浸在一个完全集成的研究计划。 这一努力超出了研究小组的核心学生,通过研讨会重点关注热电材料的综合理论/实验方法,并在“大数据”环境中工作。 一套K-12和社区大学外展计划的目标是在STEM中招募代表性不足的群体。 这些创新项目包括教师培训模块、课后项目和社区大学学生的暑期研究机会。该奖项由材料研究部(DMR)、数学科学部(DMS)和计算机与网络系统部(CNS)支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qin Lv其他文献

Item-based top-N recommendation resilient to aggregated information revelation
基于项目的前 N ​​项推荐可适应聚合信息揭示
  • DOI:
    10.1016/j.knosys.2014.04.038
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Dongsheng Li;Qin Lv;Li Shang;Ning Gu
  • 通讯作者:
    Ning Gu
Fault prediction and diagnosis of wind turbine generators using SCADA data
利用SCADA数据进行风力发电机故障预测与诊断
  • DOI:
    10.3390/en10081210
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Yingying Zhao;Dongsheng Li;Ao Dong;Dahai Kang;Qin Lv;Li Shang
  • 通讯作者:
    Li Shang
Dynamic Metabolic Profiling of Urine From Type 2 Diabetic KK-Ay Mice Treated with Repaglinide by GC-MS
通过 GC-MS 对接受瑞格列奈治疗的 2 型糖尿病 KK-Ay 小鼠的尿液进行动态代谢分析
  • DOI:
    10.1080/00032719.2012.677977
  • 发表时间:
    2012-04
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Haiyang Yi;Lunzhao Yi;Ruihua He;Qin Lv;Xiufen Ren;Zhimin Zhang;Yizeng Liang;Jun He
  • 通讯作者:
    Jun He
Subjective Well-Being, Work Motivation and Organizational Commitment of Chinese Hotel Frontline Employees: A Moderated Mediation Study
中国酒店一线员工的主观幸福感、工作动机和组织承诺:有调节的中介研究
SalesExplorer: Exploring sales opportunities from white-space customers in the enterprise market
SalesExplorer:探索企业市场空白客户的销售机会
  • DOI:
    10.1016/j.knosys.2016.09.011
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Dongsheng Li;Yaoping Ruan;Qin Lv;Li Shang
  • 通讯作者:
    Li Shang

Qin Lv的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qin Lv', 18)}}的其他基金

CyberSEES: Type 2: Collaborative Research: Connecting Next-generation Air Pollution Exposure Measurements to Environmentally Sustainable Communities
Cyber​​SEES:类型 2:协作研究:将下一代空气污染暴露测量与环境可持续社区联系起来
  • 批准号:
    1442971
  • 财政年份:
    2014
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
BIGDATA: Small: DCM: ESCE: Condensate Database for Efficient Anomaly Detection and Quality Assurance of Massive Cryospheric Data
大数据:小型:DCM:ESCE:用于高效异常检测和海量冰冻圈数据质量保证的凝结水数据库
  • 批准号:
    1251257
  • 财政年份:
    2013
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了