Understanding the impact of engineered nanoparticles on the lysosome-autophagy system
了解工程纳米粒子对溶酶体自噬系统的影响
基本信息
- 批准号:1336053
- 负责人:
- 金额:$ 30.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-10-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET - 1336053 The last decade has witnessed rapid growth in the nanotechnology industry: more than 1,000 consumer products containing nanoparticles (NPs) are currently in the market place, and a variety of newly engineered nanomaterials are developed every day. As a result, workers in the nanotechnology industry, consumers, and ultimately the environment itself inevitably come in contact with engineered NPs. Because of their unique properties, including their nanoscale size, large surface area, chemical composition, and reactivity, NPs interact with biological components and systems, many of which also operate at the nanoscale level. Not surprisingly, growing concerns have been raised over the possibility that these interactions could have deleterious effects on humans. Currently, toxicology studies are typically conducted to assess the risk associated with exposure to newly engineered nanomaterials. However, even when NPs are not deemed toxic based on standard in vivo and in vitro viability assays, they might still significantly alter cell physiology. A wealth of information is available about the cellular uptake of NPs, and the rate at which cells internalize NPs can be controlled with respect to NP size, charge, and surface properties. However, the impact of these physicochemical properties on other cellular processes has not been investigated in a systematic fashion. It is known, for instance, that upon internalization, most NPs elicit the reaction of cellular clearance mechanisms. Indeed, the project team recently found that a number of NPs activate autophagy, the main catabolic pathway that eliminates cellular waste. While activation of autophagy may lead to enhanced clearance of waste material, it can also induce activation of cell death programs. Moreover, preliminary studies indicate that NPs of specific charege and composition can activate the autophagic response but also impair cellular components that mediate degradation, ultimately blocking autophagic flux.The project team recently developed a set of analytical tools to monitor the autophagic flux and cell model systems to measure the accumulation of autophagic substrates, including proteolipid and proteinaceous aggregates. The team is thus uniquely positioned to investigate the impact of NPs on the autophagic system. The overarching goal of the proposed project is to map the physicochemical properties of NPs with the nature of the autophagic response that they induce, ultimately generating the design rules to engineer NPs with the desired properties at the interface with the autophagy system. To achieve this goal, we propose to pursue three research objectives: 1) Identify the physicochemical properties of NPs that activate autophagy; 2) link the physicochemical properties of NPs to biocompatible and bioadverse cellular responses associated with autophagy activation; and 3) identify the cellular network that regulates the autophagic response to NPs.Intellectual Merit :Results from this study will provide a detailed characterization of the impact of NPs on the autophagy system. The project will establish the effect of NP physicochemical properties, namely geometric parameters, charge, and composition, on downstream effects associated with activation of autophagy, namely clearance of NPs and other autophagic substrates or autophagy-associated cell death. The project will also identify the gene network that regulates the autophagic response to NPs and cellular markers of NP-induced autophagy, thus providing important predictive tools to assess the impact of NPs on cell physiology.Broader Impacts :This study will generate an experimental framework for investigating the impact of NPs on biological systems. Specially designed reporter systems will be developed and validated to link the physicochemical properties of NPs to cellular responses and their underlying molecular mechanisms. Understanding the impact of NPs on cell physiology, in turn, will contribute to the development of safe nanomaterials and will enable the design of third-generation NPs with tunable properties where these NPs interface with biological systems. Finally, the proposed project will provide novel tools for cellular and molecular biology studies. This research program will also provide broadly reaching educational and training opportunities with the overall goal of increasing the number and diversity of underrepresented groups in STEM. Specifically, this research program will be leveraged 1) to provide research and mentoring opportunities for high school students, and 2) to improve teaching and learning for college students.
CBET - 1336053 过去十年见证了纳米技术行业的快速发展:目前市场上有超过 1,000 种含有纳米粒子 (NP) 的消费品,并且每天都有各种新设计的纳米材料被开发出来。因此,纳米技术行业的工人、消费者以及最终环境本身都不可避免地会接触到工程纳米颗粒。由于其独特的性质,包括纳米级尺寸、大表面积、化学成分和反应性,纳米粒子与生物成分和系统相互作用,其中许多也在纳米级水平上运行。毫不奇怪,人们越来越担心这些相互作用可能对人类产生有害影响。目前,毒理学研究通常用于评估与接触新设计的纳米材料相关的风险。然而,即使根据标准的体内和体外活力测定,纳米颗粒不被认为是有毒的,它们仍然可能显着改变细胞生理学。关于细胞摄取纳米颗粒的大量信息,以及细胞内化纳米颗粒的速率可以通过纳米颗粒的大小、电荷和表面特性来控制。然而,这些物理化学特性对其他细胞过程的影响尚未得到系统的研究。例如,众所周知,大多数纳米粒子在内化后会引发细胞清除机制的反应。事实上,该项目团队最近发现许多纳米颗粒可以激活自噬,这是消除细胞废物的主要分解代谢途径。虽然自噬的激活可能会导致废物的清除增强,但它也可以诱导细胞死亡程序的激活。此外,初步研究表明,特定电荷和成分的纳米颗粒可以激活自噬反应,但也会损害介导降解的细胞成分,最终阻断自噬通量。项目团队最近开发了一套监测自噬通量的分析工具和细胞模型系统来测量自噬底物的积累,包括蛋白脂质和蛋白质聚集体。因此,该团队在研究纳米粒子对自噬系统的影响方面具有独特的优势。该项目的总体目标是将纳米颗粒的理化特性与其诱导的自噬反应的性质进行映射,最终生成设计规则,以在与自噬系统的界面处设计具有所需特性的纳米颗粒。为了实现这一目标,我们建议追求三个研究目标:1)确定激活自噬的纳米颗粒的理化特性; 2) 将纳米粒子的理化特性与自噬激活相关的生物相容性和生物不利细胞反应联系起来; 3) 确定调节纳米颗粒自噬反应的细胞网络。 学术价值:本研究的结果将提供纳米颗粒对自噬系统影响的详细表征。该项目将确定纳米粒子的理化特性(即几何参数、电荷和组成)对与自噬激活相关的下游效应(即纳米粒子和其他自噬底物的清除或自噬相关的细胞死亡)的影响。该项目还将确定调节纳米颗粒自噬反应的基因网络和纳米颗粒诱导自噬的细胞标记物,从而为评估纳米颗粒对细胞生理学的影响提供重要的预测工具。 更广泛的影响:这项研究将产生一个实验框架,用于研究纳米颗粒对生物系统的影响。将开发和验证专门设计的报告系统,将纳米颗粒的理化特性与细胞反应及其潜在的分子机制联系起来。反过来,了解纳米颗粒对细胞生理学的影响将有助于安全纳米材料的开发,并将使得能够设计具有可调特性的第三代纳米颗粒,其中这些纳米颗粒与生物系统相互作用。最后,拟议的项目将为细胞和分子生物学研究提供新的工具。该研究计划还将提供广泛的教育和培训机会,总体目标是增加 STEM 中代表性不足群体的数量和多样性。具体来说,该研究计划将用于 1) 为高中生提供研究和指导机会,2) 改善大学生的教学和学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Segatori其他文献
Remodeling the Proteostasis Network to Rescue Glucocerebrosidase Variants by Inhibiting ER-Associated Degradation and Enhancing ER Folding
重塑蛋白质稳态网络,通过抑制内质网相关降解和增强内质网折叠来拯救葡萄糖脑苷脂酶变体
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3.7
- 作者:
Fan Wang;Laura Segatori - 通讯作者:
Laura Segatori
Assembling Magnetic Colloidal Particles in Microfluidic Devices by WeijiaXie
在微流体装置中组装磁性胶体粒子 作者:WeijiaXie
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
L. Biswal;M. Pasquali;Laura Segatori;D. Li;G. Kini;Kaixuan Liu;Kung;Nan Du;D. Stark;Yu;Paul Choi;Madhu Thakur;Robert J. Wydra;Laura E Timmerman - 通讯作者:
Laura E Timmerman
Lipid bilayer phase transformations detected using microcantilevers.
使用微悬臂梁检测脂质双层相变。
- DOI:
10.1021/jp4095112 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jinghui Wang;Kai;Laura Segatori;S. Biswal - 通讯作者:
S. Biswal
Novel Approaches to Label the Surface of S. aureus with DBCO for Click Chemistry-Mediated Deposition of Sensitive Cargo
用于点击化学介导的敏感货物沉积的用 DBCO 标记金黄色葡萄球菌表面的新方法
- DOI:
10.1021/acs.bioconjchem.4c00575 - 发表时间:
2025-06-18 - 期刊:
- 影响因子:3.900
- 作者:
Tsvetelina H. Baryakova;Chia-Chien Hsu;Laura Segatori;Kevin J. McHugh - 通讯作者:
Kevin J. McHugh
Lacidipine remodels protein folding and Ca 2+ homeostasis in Gaucher's disease fibroblasts: a mechanism to rescue mutant glucocerebrosidase.
拉西地平重塑戈谢病成纤维细胞中的蛋白质折叠和 Ca 2 稳态:拯救突变型葡萄糖脑苷脂酶的机制。
- DOI:
10.1016/j.chembiol.2011.04.008 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Fan Wang;A. Chou;Laura Segatori - 通讯作者:
Laura Segatori
Laura Segatori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Segatori', 18)}}的其他基金
Novel mammalian cell-based devices that sense and respond
基于哺乳动物细胞的新型感知和响应设备
- 批准号:
2036109 - 财政年份:2021
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Next-generation, feedback-responsive cell factories for recombinant protein manufacturing
用于重组蛋白制造的下一代反馈响应细胞工厂
- 批准号:
1930149 - 财政年份:2019
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
Engineering nanoparticles and nanostructures with precise and tunable modalities of interaction with the autophagy-lysosome system
工程纳米粒子和纳米结构与自噬-溶酶体系统具有精确且可调节的相互作用方式
- 批准号:
1805317 - 财政年份:2018
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
A platform for targeted, post-translational control of protein levels in mammalian cells
用于哺乳动物细胞中蛋白质水平的靶向翻译后控制的平台
- 批准号:
1615562 - 财政年份:2016
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
CAREER: Engineering cellular clearance pathways using nanoparticles
职业:使用纳米粒子设计细胞清除途径
- 批准号:
1254318 - 财政年份:2013
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Enhancing the innate cellular degradation capacity
增强先天细胞降解能力
- 批准号:
1159640 - 财政年份:2012
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
EAGER: Engineering Molecular Sensors Of Endoplasmic Reticulum-Associated Degradation (ERAD)
EAGER:内质网相关降解(ERAD)的工程分子传感器
- 批准号:
1112783 - 财政年份:2011
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
相似国自然基金
The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于ImPACT方案的家长干预对孤独症谱系障碍儿童干预疗效及神经生物学机制研究
- 批准号:82301732
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
西方饮食通过“肠道菌群-Rspo1”轴促进肥胖与肠道吸收的机制研究
- 批准号:82370845
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
2型糖尿病胰岛β细胞功能调控新靶点IMPACT的功能及作用机制研究
- 批准号:81600598
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于IMPACT模型的社区慢性病干预效果的经济学评价研究
- 批准号:71303173
- 批准年份:2013
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
IRAK4 AS A NOVEL IMMUNOTHERAPEUTIC TARGET IN PANCREATIC DUCTAL ADENOCARCINOMA
IRAK4 作为胰腺导管腺癌的新型免疫治疗靶点
- 批准号:
10442874 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
Examining the impact of laboratory housing temperature on murine CD28 and the response to anti-PD-1
检查实验室外壳温度对小鼠 CD28 的影响以及抗 PD-1 的反应
- 批准号:
10751424 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
Molecular impact of endolysosomal dysfunction on neuron-glia communication pathways
内溶酶体功能障碍对神经元-胶质细胞通讯途径的分子影响
- 批准号:
10538113 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
'Can you stop a PDC?' Assessing the impact of natural and engineered barriers on deadly volcanic flows in the built environment.
“你能阻止 PDC 吗?”
- 批准号:
2890298 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
Studentship
Development of Engineered Native Bacteria as a Tool for Functional Manipulation of the Gut Microbiome
开发工程原生细菌作为肠道微生物组功能操纵的工具
- 批准号:
10737475 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
Impact of CREB-driven mechanism in shaping the tumor-immune landscape
CREB 驱动机制对塑造肿瘤免疫景观的影响
- 批准号:
10586923 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
Harnessing TNFa Signaling To Improve Therapeutic Response In Pancreatic Cancer
利用 TNFa 信号传导改善胰腺癌的治疗反应
- 批准号:
10587590 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
Investigating the impact of hyperglycemia on modulating T cell populations in breast cancer
研究高血糖对调节乳腺癌 T 细胞群的影响
- 批准号:
10750137 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
Impact of actin binding protein Coronin 1C in the pathogenesis of Parkinson's disease
肌动蛋白结合蛋白 Coronin 1C 在帕金森病发病机制中的影响
- 批准号:
10392204 - 财政年份:2022
- 资助金额:
$ 30.5万 - 项目类别:
Regulation of Mesenchymal Stem Cell Secretome for Treatment of Microglia Damage in Traumatic Brain Injury
间充质干细胞分泌组的调节治疗创伤性脑损伤中的小胶质细胞损伤
- 批准号:
10626686 - 财政年份:2022
- 资助金额:
$ 30.5万 - 项目类别:














{{item.name}}会员




