The Angiosperm Sieve Tube System: Elucidating Gene Regulatory Networks Involved in Phosphate Acquisition & Homeostasis

被子植物筛管系统:阐明参与磷酸盐获取的基因调控网络

基本信息

  • 批准号:
    1339128
  • 负责人:
  • 金额:
    $ 137.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

In the coming decades, our global society will face a significant challenge in terms of achieving agricultural production sufficient to sustain the expanding population, changing food preferences and increasing production demands for biofuels. This challenge represents both a need for a substantial increase in overall food production and, at the same time, sustaining crop yields under conditions where nutrient and water availability will serve as limiting conditions. In this regard, phosphorus (P), a major macronutrient requirement for all plants and animals, will represent a major challenge for increasing global food production. The basis for this challenge is two-fold. First, soils contain P in various forms, including inorganic (Pi) and organic phosphates, and in many agricultural soils, low levels of available P place constraints on general biomass production and crop yield potential. Modern agricultural practice has sought to overcome this problem through application of P, in the form of fertilizer, and this approach has contributed substantially to yield increases. However, global available P resources are finite and rapidly being diminished. Second, modern crop species have been bred for increased yield at the expense of P use efficiency. Thus, to ensure future high (and increased) levels of agricultural productivity, plant scientists must develop a better understanding of the molecular events involved in controlling P homeostasis in plants. Current studies are addressing the mechanisms employed by the root system of the plant to search and mine the soil environment for the various available forms of P. In this project, a focus will be placed on identifying the molecular basis of the internal signaling systems, employed by plants, that allows for an interactive response between the soil and the root and shoot organs to optimize P acquisition and allocation to support growth (and yield) in the presence of limited P availability within the soil. Knowledge generated will complement work by other research groups that, collectively, will serve as a pivotal resource for genomics-based breeding programs, with the ultimate goal of developing agricultural crops with enhanced ability for growth and high yield potential under reduced Pi fertilizer application. Achieving this goal would help to ensure that the nutritional needs are met for the peoples of all countries. All data generated will be accessible through a project website and through long-term repositories. Producing sufficient food to sustain an expanding population is challenging because of the need to do so under conditions where phosphate (Pi)-fertilizer availability will become a limiting condition. Achieving a solution to these problems will require the development of crop plants with enhanced Pi use efficiency. In this regard, it has long been known that Pi uptake by the root system is controlled by root-to-shoot (xylem) and shoot-to-root (phloem) signaling. However, the molecular components that function in these vascular signaling pathways remain poorly understood. This project aims to identify the nature of these signals that function in coordinating Pi uptake and utilization by the plant. These studies will involve the utilization of functional genomics, computational biology, cellular, physiological and protein chemistry approaches, to address the following objectives: (a) identify the Pi-sensing cells located within source leaves; (b) determine which Pi-upregulated phloem sap RNA species move to the root/shoot apex; and (c) identify cells within the root/shoot apex that receive and respond to these phloem RNA species. This knowledge will complement ongoing efforts by other groups and establish a foundation for genomics-based breeding programs aimed at improving plant Pi use efficiency.
在未来几十年,我们的全球社会将面临一个重大挑战,即实现足以维持不断增长的人口的农业生产,改变粮食偏好,增加生物燃料的生产需求。这一挑战意味着既需要大幅度增加粮食总产量,同时又需要在养分和水的供应将成为限制条件的情况下维持作物产量。在这方面,磷(P)是所有植物和动物的主要常量营养素需求,将成为增加全球粮食产量的主要挑战。这一挑战的基础是双重的。首先,土壤中含有各种形式的磷,包括无机(Pi)和有机磷酸盐,在许多农业土壤中,低水平的有效磷限制了一般生物量生产和作物产量潜力。现代农业实践已经试图通过以肥料的形式施用P来克服这个问题,并且这种方法极大地促进了产量的增加。然而,全球可利用的磷资源是有限的,而且正在迅速减少。第二,现代作物品种的培育是为了增加产量,而牺牲了磷的利用效率。因此,为了确保未来的高(和增加)水平的农业生产力,植物科学家必须制定一个更好地了解参与控制植物体内磷稳态的分子事件。目前的研究正在解决植物根系在土壤环境中寻找和挖掘各种可用形式的P的机制。在这个项目中,重点将放在确定植物所采用的内部信号系统的分子基础上,这使得土壤与根和地上部器官之间的相互作用,以优化磷的获取和分配,以支持生长(和产量)在土壤中存在有限的P有效性。所产生的知识将补充其他研究小组的工作,这些研究小组将共同作为基于基因组学的育种计划的关键资源,最终目标是开发出在减少磷肥施用量的情况下具有增强生长能力和高产潜力的农作物。实现这一目标将有助于确保满足所有国家人民的营养需要。生成的所有数据都可通过项目网站和长期储存库查阅。生产足够的粮食来维持不断增长的人口是一项挑战,因为需要在磷肥(Pi)可用性将成为限制条件的条件下这样做。要解决这些问题,就需要开发出具有更高磷利用效率的作物。就这一点而言,长期以来已知根系对Pi的吸收受根-芽(木质部)和芽-根(韧皮部)信号传导的控制。然而,在这些血管信号通路中起作用的分子组分仍然知之甚少。该项目旨在确定这些信号的性质,这些信号在协调植物对Pi的吸收和利用方面发挥作用。这些研究将涉及利用功能基因组学、计算生物学、细胞、生理学和蛋白质化学方法,以解决以下目标:(a)鉴定位于源叶内的Pi敏感细胞;(B)确定哪些Pi上调的韧皮部汁液RNA种类移动到根/茎尖;和(c)鉴定根/茎尖内接收和响应这些韧皮部RNA种类的细胞。这些知识将补充其他小组正在进行的努力,并为旨在提高植物Pi利用效率的基于基因组学的育种计划奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Lucas其他文献

Delivering the Goods: Internet Delivery of Printed Material
交付货物:印刷材料的互联网交付
Recurrence and resilience : the third wave of the 1918-19 influenza pandemic in Hamilton
复发和复原力:1918-19 年汉密尔顿流感大流行的第三波
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. A. Herring;Sally Carraher;E. Waugh;Amy Hughes;Brydne M. Edwards;Laura L. Koskocky;Hope McGilly;Sarah O’Sullivan;Katie Wright;J. A. Thompson;D. Ravenscroft;E. Pipitone;Tiffany Rickard;C. Popek;Andrea Goertzen;Rory Schafer;Melanie Murken;Jovan Krasulja;Katie Zazulak;Brent Cuthbertson;Chih;William Lucas
  • 通讯作者:
    William Lucas
A Comparative Analysis of Ointment Base Efficiency Utilizing a Pain Threshold Method
  • DOI:
    10.1002/jps.3030420608
  • 发表时间:
    1953-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    William Lucas;Earl P. Guth
  • 通讯作者:
    Earl P. Guth

William Lucas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Lucas', 18)}}的其他基金

Molecular Characterization of Plant Plasmodesmal & Non-Cell-Autonomous Potein Pathway Components
植物胞间连丝的分子表征
  • 批准号:
    0918433
  • 财政年份:
    2009
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Standard Grant
Integrated Studies on the Phloem as a Long-Distance Communication System in Plants
韧皮部作为植物远距离通讯系统的综合研究
  • 批准号:
    0715513
  • 财政年份:
    2008
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Standard Grant
Photoperiodic Signaling in Plants: Investigations into the Mechanism(s) by which FLOWERING LOCUS T Traffics Through the Phloem
植物中的光周期信号:对 FLOWERING LOCUS T 通过韧皮部运输的机制的研究
  • 批准号:
    0752997
  • 财政年份:
    2008
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Continuing Grant
Molecular Investigation into the Role Played by Tobacco and Arabidopsis NCAPP1 Genes in Plasmodesmal Function
烟草和拟南芥 NCAPP1 基因在胞间连丝功能中作用的分子研究
  • 批准号:
    0444725
  • 财政年份:
    2005
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Continuing Grant
Acquistion of Confocal Microscope for Research & Teaching
购买共焦显微镜用于研究
  • 批准号:
    0354790
  • 财政年份:
    2004
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Standard Grant
Integrated Studies on Cellular and Physiological Roles of Higher Plant Plasmodesmata
高等植物胞间连丝细胞和生理作用的综合研究
  • 批准号:
    0315174
  • 财政年份:
    2003
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Standard Grant
Integrated Studies on Cellular and Physiological Roles of Higher Plant Plasmodesmata
高等植物胞间连丝细胞和生理作用的综合研究
  • 批准号:
    9900539
  • 财政年份:
    1999
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Continuing Grant
Integrated Studies on the Cellular, Physiological and Developmental Roles Played by Higher Plant Plasmodesmata
高等植物胞间连丝的细胞、生理和发育作用的综合研究
  • 批准号:
    9406974
  • 财政年份:
    1994
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Continuing Grant
Conference on: Basic and Applied Research in PlasmodesmatalBiology; in Oosterbeek/Wageningen, The NETHERLANDS; September 1 - 6, 1992.
会议主题:胞间连丝生物学基础与应用研究;
  • 批准号:
    9122234
  • 财政年份:
    1992
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Standard Grant
Temporal and Spatial Regulation of the Putative Class II H+ Transporter of the Chara Plasma Membrane
推测的轮藻质膜 II 类 H 转运蛋白的时空调节
  • 批准号:
    9206686
  • 财政年份:
    1992
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Standard Grant

相似国自然基金

偏线性分位数样本截取和选择模型的估计与应用—基于非参数筛分法(Sieve Method)
  • 批准号:
    72273091
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
基于Sieve Bootstrap方法的长记忆过程变点研究与应用
  • 批准号:
    11301291
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Sieve似然比与小样本条件推断理论研究
  • 批准号:
    10071090
  • 批准年份:
    2000
  • 资助金额:
    12.0 万元
  • 项目类别:
    面上项目

相似海外基金

Sieve based full likelihood approach for the Cox proportional hazards model with applications to immunotherapies trials
基于筛法的 Cox 比例风险模型的完全似然法及其在免疫治疗试验中的应用
  • 批准号:
    10577723
  • 财政年份:
    2023
  • 资助金额:
    $ 137.09万
  • 项目类别:
Carbon Molecular Sieve Membranes for Organic Solvent Separation
用于有机溶剂分离的碳分子筛膜
  • 批准号:
    DP220102203
  • 财政年份:
    2023
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Discovery Projects
Morphology-Controlled Carbon Molecular Sieve Membranes for Gas Separation
用于气体分离的形态控制碳分子筛膜
  • 批准号:
    2316143
  • 财政年份:
    2022
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Standard Grant
Synthesis of AFX Type Zeolite Membrane for Separating Dilute CO2 by Molecular Sieve Mechanism
分子筛机制分离稀CO2的AFX型沸石膜的合成
  • 批准号:
    22K19864
  • 财政年份:
    2022
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Strong subconvexity and an optimal large sieve inequality for PGL(2)
PGL(2) 的强次凸性和最优大筛不等式
  • 批准号:
    EP/W009838/1
  • 财政年份:
    2022
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Research Grant
Retinal optic nerve regeneration by human iPS cell-derived retinal ganglion cells and artificial sieve plate transplantation
人iPS细胞来源的视网膜神经节细胞和人工筛板移植的视网膜视神经再生
  • 批准号:
    21K19548
  • 财政年份:
    2021
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of machine-learning type odor sensing technology by integrating image output type sensor and molecular sieve mechanism
开发集成图像输出型传感器和分子筛机构的机器学习型气味传感技术
  • 批准号:
    21K18718
  • 财政年份:
    2021
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Constructions and sieve-based lower bounds on mutually orthogonal latin squares with holes
相互正交带孔拉丁方的构造和基于筛的下界
  • 批准号:
    550259-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 137.09万
  • 项目类别:
    University Undergraduate Student Research Awards
RESEARCH-PGR: Sieve Tube Proteomics - Unraveling the Physiology and Cell Biology of an Arcane Cell Type
RESEARCH-PGR:筛管蛋白质组学 - 揭示神秘细胞类型的生理学和细胞生物学
  • 批准号:
    1940827
  • 财政年份:
    2020
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Standard Grant
Morphology-Controlled Carbon Molecular Sieve Membranes for Gas Separation
用于气体分离的形态控制碳分子筛膜
  • 批准号:
    2019350
  • 财政年份:
    2020
  • 资助金额:
    $ 137.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了