CAREER: Transport and Non-Equilibrium Physics in Strongly Correlated Systems

职业:强相关系统中的输运和非平衡物理

基本信息

  • 批准号:
    1339564
  • 负责人:
  • 金额:
    $ 35.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYThe Division of Materials Research and the Office of Cyberinfrastructure contribute funding to this CAREER award. This award supports theoretical and computational research, and education on developing new computational methods to study non-equilibrium behavior of strongly correlated materials and nanostructures. In particular new algorithms will be developed to further enhance and expand the applicability of a recently developed time-dependent density matrix renormalization group method and to enable its use to attack fundamental problems in nonequilibrium strongly correlated materials and nanostructures.The PI will use the time-dependent density matrix renormalization group method to advance timely open problems, that will address fundamental questions, including: What are the universal scaling laws governing far from equilibrium transport? What are the fundamental processes in the coherent dynamics and decoherence of many-body systems? How does integrability affect thermalization and equilibration of systems out of equilibrium? The PI will focus on the specific problems: + understanding the correlations, transients, and time-scales involved in the operation of quantum gates, for quantum information processing;+ understanding the equilibrium and non-equilibrium behavior of one-dimensional and quasi one-dimensional strongly correlated systems in the presence of spin-charge separation and Kondo correlations at zero temperature and at finite temperatures - the spin-incoherent regime; + understanding time-dependent phenomena in ultracold atomic gases, with an eye to probe and realize novel quantum phases of matter;+ understanding time-dependent correlations in momentum space using the time-dependent density matrix renormalization group, and its application to calculate spectral properties of strongly correlated systems. This project is computationally intensive and involves developing new numerical techniques. Students will learn valuable analytical and computational skills that will better prepare them to join the technologically savvy modern workforce. The PI will proactively recruit students from underrepresented groups. Computational tools developed in the course of the award will be made freely available and open-source through the Algorithms and Libraries for Physics Simulations project, which has already provided enormous benefits to the scientific community. These tools include the development of an educational software toolkit that contains visualization, data analysis, provenance, and simulation packages. These activities will contribute to the formation of new generations of computational condensed matter physicists. Through the ALPS project, the PI will contribute to a book on computational condensed matter, the organization of workshops, and teleteaching. A series of public lectures is also planned, to complement and enhance department outreach activities.NONTECHNICAL SUMMARYThe Division of Materials Research and the Office of Cyberinfrastructure contribute funding to this CAREER award. This award supports research and education with a strong computational flavor to advance fundamental understanding in important areas that involve quantum mechanical states that change in time. The PI will develop new computational methods and use them to make progress on fundamental problems that involve materials and structures of atoms which have dimensions some 100,000 times smaller than a human hair. The materials and structures of interest contain electrons that interact strongly with each other leading to highly correlated motion. The research is focused on electrons that are driven far away from the placid stable state of equilibrium to a new nonequilibrium state. Among the questions that the PI will explore are how such a state relaxes back to the tranquility of equilibrium, and how fundamental signatures of a quantum mechanical system degrade.This is fundamental research that may have impact on efforts to develop ever smaller electronic devices with higher performance. It may also have impact on the discovery of new phenomena and is focused in part on how to prepare and manipulate quantum mechanical states to perform quantum computation and novel electronic device functions.This project is computationally intensive and involves developing new numerical techniques. Students will learn valuable analytical and computational skills that will better prepare them to join the technologically savvy modern workforce. The PI will proactively recruit students from underrepresented groups. Computational tools developed in the course of the award will be made freely available and open-source through the Algorithms and Libraries for Physics Simulations project, which has already provided enormous benefits to the scientific community. These tools include the development of an educational software toolkit that contains visualization, data analysis, provenance, and simulation packages. These activities will contribute to the formation of new generations of computational condensed matter physicists. Through the ALPS project, the PI will contribute to a book on computational condensed matter, the organization of workshops, and teleteaching. A series of public lectures is also planned, to complement and enhance department outreach activities.
技术总结材料研究司和网络基础设施办公室为这一职业奖项提供资金。该奖项支持理论和计算研究,以及开发新的计算方法来研究强相关材料和纳米结构的非平衡行为的教育。特别是,将开发新的算法来进一步增强和扩展最近发展的含时密度矩阵重整化群方法的适用性,并使其能够用于解决非平衡强关联材料和纳米结构中的基本问题。PI将使用含时密度矩阵重整化群方法来推进及时的公开问题,这将解决基本问题,包括:什么是控制远离平衡输运的普遍标度定律。多体系统的相干动力学和退相干的基本过程是什么?可积性如何影响非平衡系统的热化和平衡?PI将侧重于具体问题:+了解量子信息处理中量子门操作所涉及的关联、瞬变和时间尺度;+了解在零温和有限温度下存在自旋-电荷分离和近藤关联的一维和准一维强关联系统的平衡和非平衡行为--自旋非相干区域;+了解超冷原子气体中的时间相关现象,着眼于探索和实现物质的新量子相;利用含时密度矩阵重整化群理解动量空间中的含时关联,并将其应用于计算强关联系统的光谱性质。这个项目是计算密集型的,涉及开发新的数值技术。学生将学习有价值的分析和计算技能,这将使他们为加入精通技术的现代劳动力做好更好的准备。国际学生联合会将积极主动地从代表性不足的群体中招收学生。在颁奖过程中开发的计算工具将通过算法和物理模拟图书馆项目免费提供并开放源码,该项目已经为科学界带来了巨大的好处。这些工具包括开发一个教育软件工具包,其中包含可视化、数据分析、来源和模拟包。这些活动将有助于形成新一代计算凝聚态物理学家。通过阿尔卑斯山项目,国际和平研究所将为一本关于计算凝聚态物质、研讨会的组织和远程教学的书籍做出贡献。还计划举办一系列公开讲座,以补充和加强部门的外展活动。非技术总结材料研究部和数字基础设施办公室为这一职业奖项提供资金。该奖项支持具有强烈计算色彩的研究和教育,以促进对涉及随时间变化的量子力学状态的重要领域的基本理解。PI将开发新的计算方法,并利用它们在基本问题上取得进展,这些问题涉及原子的材料和结构,这些原子的尺寸比人类头发小约10万倍。感兴趣的材料和结构包含相互作用强烈的电子,导致高度相关的运动。这项研究的重点是被驱使远离平静的稳定平衡状态的电子,进入新的非平衡状态。PI将探索的问题包括这种状态如何放松到平衡的宁静,以及量子力学系统的基本特征如何退化。这是基础研究,可能会对开发更小、更高性能的电子设备的努力产生影响。它还可能对新现象的发现产生影响,部分集中在如何准备和操纵量子力学状态来执行量子计算和新的电子设备功能。这个项目是计算密集型的,涉及开发新的数值技术。学生将学习有价值的分析和计算技能,这将使他们为加入精通技术的现代劳动力做好更好的准备。国际学生联合会将积极主动地从代表性不足的群体中招收学生。在颁奖过程中开发的计算工具将通过算法和物理模拟图书馆项目免费提供并开放源码,该项目已经为科学界带来了巨大的好处。这些工具包括开发一个教育软件工具包,其中包含可视化、数据分析、来源和模拟包。这些活动将有助于形成新一代计算凝聚态物理学家。通过阿尔卑斯山项目,国际和平研究所将为一本关于计算凝聚态物质、研讨会的组织和远程教学的书籍做出贡献。此外,还计划举办一系列公开讲座,以补充和加强部门的外展活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrian Feiguin其他文献

3D Heisenberg universality in the van der Waals antiferromagnet NiPS3
范德瓦尔斯反铁磁体 NiPS3 中的三维海森堡通用性
  • DOI:
    10.1038/s41535-024-00696-6
  • 发表时间:
    2024-11-27
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Rajan Plumley;Sougata Mardanya;Cheng Peng;Johannes Nokelainen;Tadesse Assefa;Lingjia Shen;Nicholas Burdet;Zach Porter;Alexander Petsch;Aidan Israelski;Hongwei Chen;Jun-Sik Lee;Sophie Morley;Sujoy Roy;Gilberto Fabbris;Elizabeth Blackburn;Adrian Feiguin;Arun Bansil;Wei-Sheng Lee;Aaron M. Lindenberg;Sugata Chowdhury;Mike Dunne;Joshua J. Turner
  • 通讯作者:
    Joshua J. Turner

Adrian Feiguin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adrian Feiguin', 18)}}的其他基金

The many-body problem in the age of quantum machine learning
量子机器学习时代的多体问题
  • 批准号:
    2120501
  • 财政年份:
    2021
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Continuing Grant
Spin and Charge Dynamics: Competing Orders and Quasi-Particle Formation
自旋和电荷动力学:竞争秩序和准粒子形成
  • 批准号:
    1807814
  • 财政年份:
    2018
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Standard Grant
CAREER: Transport and Non-Equilibrium Physics in Strongly Correlated Systems
职业:强相关系统中的输运和非平衡物理
  • 批准号:
    0955707
  • 财政年份:
    2010
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Continuing Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
  • 批准号:
    2308856
  • 财政年份:
    2023
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Standard Grant
Dynamics and non-equilibrium transport in amorphous systems: from a soft-matter physics perspective
非晶系统中的动力学和非平衡输运:从软物质物理的角度来看
  • 批准号:
    22KF0110
  • 财政年份:
    2023
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Researches on axonal transport by motor proteins based on force measurements by using nano-spring and non-equilibrium statistical physics
基于纳米弹簧和非平衡统计物理力测量的运动蛋白轴突运输研究
  • 批准号:
    23H02442
  • 财政年份:
    2023
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Nanochannel Membranes Having Rapid Transport Properties in Aqueous and Non-aqueous Solutions
开发在水和非水溶液中具有快速传输特性的纳米通道膜
  • 批准号:
    23K17369
  • 财政年份:
    2023
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Light Transport Simulation with Non-Monte Carlo Approaches
使用非蒙特卡罗方法的光传输仿真
  • 批准号:
    RGPIN-2020-03918
  • 财政年份:
    2022
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Discovery Grants Program - Individual
Proppant transport in non-Darcy fracture flow for reservoir integrity/yield
非达西裂缝流中的支撑剂传输以保证储层完整性/产量
  • 批准号:
    DP220100851
  • 财政年份:
    2022
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Discovery Projects
CAREER: Fundamental Transport Mechanisms of Evaporation From Non-Axisymmetric Droplets Confined on Hollow Micropillars Structures
职业:空心微柱结构中非轴对称液滴蒸发的基本传输机制
  • 批准号:
    2322873
  • 财政年份:
    2022
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Continuing Grant
New Phases and Non-Equilibrium Transport in Topological Mesoscopic Superfluids
拓扑介观超流体中的新相和非平衡输运
  • 批准号:
    2023928
  • 财政年份:
    2021
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Continuing Grant
Transport and dispersion of non-exhaust pollutants
非尾气污染物的输送和扩散
  • 批准号:
    2598336
  • 财政年份:
    2021
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Studentship
Nonequilibrium Transport Phenomena in Non-Hermitian Systems: Framework of Defining Physical Operators
非厄米系统中的非平衡输运现象:定义物理算子的框架
  • 批准号:
    21H01005
  • 财政年份:
    2021
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了