SI2-SSE: E-SDMS: Energy Simulation Data Management System Software

SI2-SSE:E-SDMS:能源模拟数据管理系统软件

基本信息

  • 批准号:
    1339835
  • 负责人:
  • 金额:
    $ 49.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

The building sector was responsible for nearly half of CO2 emissions in US in 2009. According to the US Energy Information Administration, buildings consume more energy than any other sector, with 48.7% of the overall energy consumption, and building energy consumption is projected to grow faster than the consumptions of industry and transportation sectors. As a response to this, by 2030 only 18% of the US building stock is expected to be relying on the current energy management technologies, with the rest either having been retrofitted or designed from the ground up using smart and cleaner energy technologies. These building energy management systems (BEMSs) need to integrate large volumes of data, including (a) continuously collected heating, ventilation, and air conditioning (HVAC) sensor and actuation data, (b) other sensory data, such as occupancy, humidity, lighting levels, air speed and quality, (c) architectural, mechanical, and building automation system configuration data for these buildings, (d) local whether and GIS data that provide contextual information, as well as (e) energy price, consumption, and cost data from electricity (such as smart grid) and gas utilities. In theory, these data can be leveraged from the initial design and/or retrofitting of buildings with data driven building optimization (including the evaluation of the building location, orientation, and alternative energy-saving strategies) to total cost of ownership (TCOs) simulation tools and day-to-day operation decisions. In practice, however, because of the size and complexity of the data, the varying spatial and temporal scales at which the key processes operate, (a) creating models to support such simulations, (b) executing simulations that involve 100s of inter-dependent parameters spanning multiple spatio-temporal frames, affected by complex dynamic processes operating at different resolutions, and (c) analyzing simulation results are extremely costly. The energy simulation data management system (e-SDMS) software will address challenges that arise from the need to model, index, search, visualize, and analyze, in a scalable manner, large volumes of multi-variate series resulting from observations and simulations. e-SDMS will, therefore, fill an important hole in data-driven building design and clean-energy (an area of national priority) and will enable applications and services with significant economic and environmental impact.The key observations driving the research is that many data sets of urgent interest to energy simulations include the following: (a) voluminous, (b) heterogeneous, (c) multi-variate, (d) temporal, (e) inter-related (meaning that the parameters of interest are dependent on each other and constrained with the structure of the building), and (f) multi-resolution (meaning that simulations and observations cover days to months of data and may be considered at different granularities of space, time, and parameters). Moreover, generating an appropriate ensemble of simulations for decision making often requires multiple simulations, each with different parameters settings corresponding to slightly different, but plausible, scenarios. Therefore, significant savings in modeling and analysis can be obtained through data management software supporting modular re-use of existing simulation results in new settings, such as re-contextualization and modular recomposition (or "sketching") of building models and if-then analysis of simulation traces under new parameters, new building floorplans, and new contexts. In developing the energy simulation data management system (e-SDMS), the research addresses the key data challenges that render data-driven energy simulations, today, difficult. This requires (a) a novel building models, simulation traces, and sensor/actuation traces (BSS) data model to accommodate energy simulation data and models, (b) feature analysis and indexing of sensory data and simulation traces along with the corresponding building models, and (c) algorithms for analysis and exploration of simulation traces and re-contextualization of models for new building plans and contextual metadata. This research will therefore, impact computational challenges that arise from the need to model, analyze, index, visualize, search, and recompose, in a scalable manner, large volumes of multi-variate series resulting from energy observations and simulations. E-SDMS consists of an (a) eViz server, which works as a frontend to e-SDMS, an (b) eDMS middleware for feature extraction, indexing, simulation analysis, and sketching, and an (c) eStore backend for data storage. To avoid waste and achieve scalabilities needed for managing large data sets, e-SDMS employs novel multi-resolution data partitioning and resource allocation strategies. The multi-resolution data encoding, partitioning, and analysis algorithms are efficiently computable, leverage massive parallelism, and result in high quality, compact data descriptions.
2009年,建筑业占美国二氧化碳排放量的近一半。根据美国能源信息署的数据,建筑物消耗的能源比任何其他部门都多,占总能源消耗的48.7%,预计建筑物能源消耗的增长速度将快于工业和运输部门的消耗。 到2030年,预计只有18%的美国建筑存量将依赖于当前的能源管理技术,其余的要么进行了改造,要么使用智能和清洁能源技术进行了从头开始的设计。这些建筑物能量管理系统(BEMS)需要集成大量数据,包括(a)连续收集的加热、通风和空调(HVAC)传感器和致动数据,(B)其他传感数据,诸如占用、湿度、照明水平、空气速度和质量,(c)这些建筑物的建筑、机械和建筑自动化系统配置数据,(d)提供背景信息的当地天气和地理信息系统数据,以及(e)来自电力(例如智能电网)和天然气公用事业的能源价格、消耗和成本数据。 从理论上讲,这些数据可以从最初的设计和/或改造建筑物与数据驱动的建筑优化(包括建筑物的位置,方向和替代节能策略的评估),以总拥有成本(TCO)模拟工具和日常运营决策。然而,在实践中,由于数据的大小和复杂性,关键过程操作的变化的空间和时间尺度,(a)创建模型以支持这样的模拟,(B)执行涉及跨越多个时空帧的100个相互依赖的参数的模拟,这些参数受到以不同分辨率操作的复杂动态过程的影响,以及(c)分析模拟结果是极其昂贵的。 能源模拟数据管理系统(e-SDMS)软件将解决由于需要以可扩展的方式对观测和模拟产生的大量多变量系列进行建模、索引、搜索、可视化和分析而产生的挑战。因此,e-SDMS将填补数据驱动建筑设计和清洁能源领域的一个重要空白(国家优先领域),并将使应用和服务具有重大的经济和环境影响。推动研究的关键观察结果是,许多对能源模拟具有迫切兴趣的数据集包括以下内容:(a)大量,(B)异质,(c)多变量,(d)时间,(e)相互关联(意味着感兴趣的参数彼此相关并且受建筑物结构的约束),以及(f)多分辨率(意味着模拟和观测涵盖数天至数月的数据,并可在不同的空间、时间和参数粒度上加以考虑)。此外,生成用于决策的适当的模拟集合通常需要多个模拟,每个模拟具有对应于略微不同但似乎合理的场景的不同参数设置。因此,通过数据管理软件支持在新的设置中模块化地重新使用现有的仿真结果,例如建筑模型的重新上下文化和模块化重组(或“草图”)以及在新的参数、新的建筑平面图和新的上下文下的仿真轨迹的if-then分析,可以获得建模和分析中的显著节省。 在开发能源模拟数据管理系统(e-SDMS)的过程中,该研究解决了当今难以进行数据驱动的能源模拟的关键数据挑战。这需要(a)新颖的建筑物模型、仿真迹线和传感器/致动迹线(BSS)数据模型以适应能量仿真数据和模型,(B)传感数据和仿真迹线沿着相应的建筑物模型的特征分析和索引,以及(c)用于仿真迹线的分析和探索以及用于新的建筑物规划和上下文元数据的模型的重新上下文化的算法。因此,这项研究将影响计算挑战,这些挑战来自于以可扩展的方式对能源观测和模拟产生的大量多变量系列进行建模、分析、索引、可视化、搜索和重组的需求。 E-SDMS包括:(a)eViz服务器,用作e-SDMS的前端;(B)eDMS中间件,用于特征提取、索引、模拟分析和草图绘制;以及(c)eStore后端,用于数据存储。 为了避免浪费和实现管理大型数据集所需的可扩展性,e-SDMS采用了新颖的多分辨率数据划分和资源分配策略。多分辨率数据编码、划分和分析算法是高效可计算的,利用大规模并行性,并产生高质量、紧凑的数据描述。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kasim Candan其他文献

Kasim Candan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kasim Candan', 18)}}的其他基金

Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
SCC-IRG JST: PanCommunity: Leveraging Data and Models for Understanding and Improving Community Response in Pandemics
SCC-IRG JST:泛社区:利用数据和模型来理解和改善流行病中的社区响应
  • 批准号:
    2125246
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
Student Support for the 35th IEEE International Conference on Data Engineering (ICDE 2019)
第 35 届 IEEE 国际数据工程会议 (ICDE 2019) 的学生支持
  • 批准号:
    1922436
  • 财政年份:
    2019
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
III: Small: pCAR: Discovering and Leveraging Plausibly Causal (p-causal) Relationships to Understand Complex Dynamic Systems
III:小:pCAR:发现并利用看似合理的因果关系(p-因果)来理解复杂的动态系统
  • 批准号:
    1909555
  • 财政年份:
    2019
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
BIGDATA: Collaborative Research: F: Discovering Context-Sensitive Impact in Complex Systems
BIGDATA:协作研究:F:发现复杂系统中的上下文敏感影响
  • 批准号:
    1633381
  • 财政年份:
    2016
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: DataStorm: A Data Enabled System for End-to-End Disaster Planning and Response
CDS
  • 批准号:
    1610282
  • 财政年份:
    2016
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Student Travel Fellowships for ACM Symposium on Cloud Computing 2015
2015 年 ACM 云计算研讨会学生旅行奖学金
  • 批准号:
    1543935
  • 财政年份:
    2015
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Assured and SCAlable Data Engineering (CASCADE)
合作研究:规划补助金:I/UCRC 用于有保证和可扩展的数据工程 (CASCADE)
  • 批准号:
    1464579
  • 财政年份:
    2015
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
RAPID: Understanding the Evolution Patterns of the Ebola Outbreak in West-Africa and Supporting Real-Time Decision Making and Hypothesis Testing through Large Scale Simulations
RAPID:了解西非埃博拉疫情的演变模式并通过大规模模拟支持实时决策和假设检验
  • 批准号:
    1518939
  • 财政年份:
    2014
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
III: Small: Data Management for Real-Time Data Driven Epidemic Spread Simulations
III:小型:实时数据驱动的流行病传播模拟的数据管理
  • 批准号:
    1318788
  • 财政年份:
    2013
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant

相似国自然基金

化脓性链球菌分泌性酯酶Sse抑制LC3相关吞噬促其侵袭的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
太阳能电池Cu2ZnSn(SSe)4/CdS界面过渡层结构模拟及缺陷态消除研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
掺杂实现Cu2ZnSn(SSe)4吸收层表层稳定弱n型特性的第一性原理研究
  • 批准号:
    12004100
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于SSE的航空信息系统信息安全保障评价指标体系的研究
  • 批准号:
    60776808
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

異常検知手法と大気ノイズ補正を併用したInSAR時系列による未知のSSE検出手法の確立
利用异常检测方法和大气噪声校正建立利用InSAR时间序列的未知SSE检测方法
  • 批准号:
    24K07168
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on vibration theory for defect detection by acoustic excitation using SSE analysis
基于SSE分析的声激励缺陷检测振动理论研究
  • 批准号:
    23K03995
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on defect detection by spatial spectral entropy (SSE) and healthy part evaluation for noncontact acoustic inspection
非接触声学检测中空间谱熵(SSE)缺陷检测和健康部位评估研究
  • 批准号:
    19K04414
  • 财政年份:
    2019
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical simulations of earthquake and SSE triggering by dynamic stress changes
动态应力变化引发地震和SSE的数值模拟
  • 批准号:
    18K03775
  • 财政年份:
    2018
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSCI: SI2-SSE: An Extensible Model to Support Scalable Checkpoint-Restart for DMTCP Across Multiple Disciplines
NSCI:SI2-SSE:支持跨多个学科的 DMTCP 可扩展检查点重启的可扩展模型
  • 批准号:
    1740218
  • 财政年份:
    2018
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
SI2-SSE: GenApp - A Transformative Generalized Application Cyberinfrastructure
SI2-SSE:GenApp - 变革性通用应用程序网络基础设施
  • 批准号:
    1912444
  • 财政年份:
    2018
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
SI2-SSE: A parallel computing framework for large-scale real-space and real-time TDDFT excited-states calculations
SI2-SSE:大规模实空间和实时 TDDFT 激发态计算的并行计算框架
  • 批准号:
    1739423
  • 财政年份:
    2018
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SI2-SSE: WRENCH: A Simulation Workbench for Scientific Worflow Users, Developers, and Researchers
协作研究:SI2-SSE:WRENCH:面向科学 Worflow 用户、开发人员和研究人员的模拟工作台
  • 批准号:
    1642369
  • 财政年份:
    2017
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
SI2-SSE: Entangled Quantum Dynamics in Closed and Open Systems, an Open Source Software Package for Quantum Simulator Development and Exploration of Synthetic Quantum Matter
SI2-SSE:封闭和开放系统中的纠缠量子动力学,用于量子模拟器开发和合成量子物质探索的开源软件包
  • 批准号:
    1740130
  • 财政年份:
    2017
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
SI2-SSE: Highly Efficient and Scalable Software for Coarse-Grained Molecular Dynamics
SI2-SSE:高效且可扩展的粗粒度分子动力学软件
  • 批准号:
    1740211
  • 财政年份:
    2017
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了