III: Small: Data Management for Real-Time Data Driven Epidemic Spread Simulations
III:小型:实时数据驱动的流行病传播模拟的数据管理
基本信息
- 批准号:1318788
- 负责人:
- 金额:$ 49.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The speed with which recent pandemics had immense global impact highlights the importance of realtime response and public health decision making, both at local and global levels. For instance, the SARS (Severe Acute Respiratory Syndrome) epidemic is estimated to have started in China in November 2002, had spread to 29 countries by August 2003, and generated a total of 916 confirmed deaths. A pandemic similar to the swine flu in 2009 is estimated to cost $360 billion in a mild scenario to the global economy and up to $4 trillion in an ultra scenario, within just the first year of the outbreak. Today, the key arsenal in the hands of decision makers who try to plan for and/or react to these outbreaks is software that enable model-driven epidemics and as well as the impacts of pharmaceutical and computer simulations for disease spreading. These software help predict geo-temporal evolution of non-pharmaceutical control measures and interventions, relying on data and models including social contact networks, local and global mobility patterns of individuals, transmission and recovery rates, and outbreak conditions. Unfortunately, because of the volume and complexity of the data and the models, the varying spatial and temporal scales at which the key transmission processes operate and relevant observations are made, today running and interpreting simulations to generate actionable plans are extremely difficult.If effectively leveraged, models reflecting past outbreaks, existing simulation traces obtained from simulation runs, and real-time observations incoming during an outbreak can be collectively used for obtaining a better understanding of the epidemic's characteristics and the underlying diffusion processes, forming and revising models, and performing exploratory, if-then type of hypothetical analyses of epidemic scenarios. More specifically, the proposed epidemic simulation data management system (epiDMS) will address computational challenges that arise from the need to acquire, model, analyze, index, visualize, search, and recompose, in a scalable manner, large volumes of data that arise from observations and simulations during a disease outbreak. Consequently, epiDMS fill an important hole in data-driven decision making during health-care emergencies and, thus, will enable applications and services with significant economic and health impact.The key observation is that the modeling and execution can be significantly reduced using a data-driven approach that supports data and simulation reuse in new settings and contexts. Relying on this observation, in order to support data-driven modeling and execution of epidemic spread simulations, this team will develop+ an epidemic data and model store (epiStore) to support acquisition and integration of relevant data and models.+ a novel networks-of-traces (NT) data model to accommodate multi-resolution, interconnected and inter-dependent, incomplete/imprecise, multi-layer (networks), and temporal (time series or traces) epidemic data.+ algorithms and data structures to support indexing of networks-of-traces (NT) data sets, including extraction of salient multi-variate temporal features from inter-dependent parameters, spanning multiple simulation layers and geo-spatial frames, driven by complex dynamic processes operating at different resolutions.+ algorithms to support the analysis of networks-of-traces (NT) datasets, including identification of unknown dependencies across theinput parameters and output variables spanning the different layers of the observation and simulation data.The proposed NT data model and algorithms will be brought together in an epidemic simulation data management system (epiDMS). For broadest impact, the proposed epidemic simulation data management system (epiDMS) will be designed in a way that interfaces with the popular Global Epidemic and Mobility (GLEaM) simulation engine, a publicly available software suit to explore epidemic spreading scenarios at the global scale. To achieve necessary scalabilities, epiDMS will employ novel multiresolution data partitioning and resource allocation strategies and will leverage massive parallelism.
最近的流行病迅速对全球产生了巨大影响,这凸显了在地方和全球各级实时应对和公共卫生决策的重要性。例如,SARS(严重急性呼吸系统综合症)流行病估计于2002年11月在中国开始,到2003年8月已蔓延到29个国家,共造成916人确认死亡。据估计,一场类似2009年猪流感的大流行,在温和的情况下会给全球经济造成3600亿美元的损失,在极端的情况下,仅在疫情爆发的第一年,就会给全球经济造成高达4万亿美元的损失。今天,试图规划和/或应对这些疫情的决策者手中的关键武器是软件,它可以实现模型驱动的流行病,以及药物和计算机模拟疾病传播的影响。这些软件依靠数据和模型,包括社会联系网络、个人的地方和全球流动模式、传播和恢复率以及疫情条件,帮助预测非药物控制措施和干预措施的地理-时间演变。不幸的是,由于数据和模型的数量和复杂性,以及关键传输过程运行和相关观测的空间和时间尺度的变化,今天运行和解释模拟以生成可操作的计划是极其困难的。如果得到有效利用,反映过去疫情的模型、从模拟运行中获得的现有模拟痕迹以及疫情期间的实时观测结果可以共同用于更好地了解疫情的特征和潜在的扩散过程,形成和修改模型,并对疫情情景进行探索性的假设分析。更具体地说,拟议的流行病模拟数据管理系统(epiDMS)将解决因需要以可扩展的方式获取、建模、分析、索引、可视化、搜索和重组疾病爆发期间观察和模拟产生的大量数据而产生的计算挑战。因此,流行病综合管理系统填补了紧急卫生保健期间数据驱动决策的一个重要漏洞,从而使应用和服务能够产生重大的经济和健康影响。关键的观察结果是,使用支持在新设置和上下文中重用数据和模拟的数据驱动方法,可以显著减少建模和执行。基于这一观察结果,为了支持数据驱动的流行病传播模拟建模和执行,该团队将开发一个流行病数据和模型存储(epiStore),以支持相关数据和模型的获取和集成。+一种新的轨迹网络(NT)数据模型,以适应多分辨率、相互关联和相互依赖、不完整/不精确、多层(网络)和时间(时间序列或轨迹)流行病数据。+算法和数据结构,以支持网络轨迹(NT)数据集的索引,包括从相互依赖的参数中提取显著的多变量时间特征,跨越多个模拟层和地理空间框架,由不同分辨率下运行的复杂动态过程驱动。+算法,以支持网络轨迹(NT)数据集的分析,包括识别跨输入参数和输出变量的未知依赖关系,跨越观察和模拟数据的不同层。建议的NT数据模型和算法将被整合到流行病模拟数据管理系统(epiDMS)中。为了产生最广泛的影响,拟议的流行病模拟数据管理系统(epiDMS)将以与流行的全球流行病和流动性(GLEaM)模拟引擎接口的方式设计,GLEaM是一个公开可用的软件套件,用于探索全球范围内的流行病传播场景。为了实现必要的可扩展性,epiDMS将采用新颖的多分辨率数据分区和资源分配策略,并将利用大规模并行性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kasim Candan其他文献
Kasim Candan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kasim Candan', 18)}}的其他基金
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
SCC-IRG JST: PanCommunity: Leveraging Data and Models for Understanding and Improving Community Response in Pandemics
SCC-IRG JST:泛社区:利用数据和模型来理解和改善流行病中的社区响应
- 批准号:
2125246 - 财政年份:2021
- 资助金额:
$ 49.96万 - 项目类别:
Continuing Grant
Student Support for the 35th IEEE International Conference on Data Engineering (ICDE 2019)
第 35 届 IEEE 国际数据工程会议 (ICDE 2019) 的学生支持
- 批准号:
1922436 - 财政年份:2019
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
III: Small: pCAR: Discovering and Leveraging Plausibly Causal (p-causal) Relationships to Understand Complex Dynamic Systems
III:小:pCAR:发现并利用看似合理的因果关系(p-因果)来理解复杂的动态系统
- 批准号:
1909555 - 财政年份:2019
- 资助金额:
$ 49.96万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: F: Discovering Context-Sensitive Impact in Complex Systems
BIGDATA:协作研究:F:发现复杂系统中的上下文敏感影响
- 批准号:
1633381 - 财政年份:2016
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: DataStorm: A Data Enabled System for End-to-End Disaster Planning and Response
CDS
- 批准号:
1610282 - 财政年份:2016
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Assured and SCAlable Data Engineering (CASCADE)
合作研究:规划补助金:I/UCRC 用于有保证和可扩展的数据工程 (CASCADE)
- 批准号:
1464579 - 财政年份:2015
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Student Travel Fellowships for ACM Symposium on Cloud Computing 2015
2015 年 ACM 云计算研讨会学生旅行奖学金
- 批准号:
1543935 - 财政年份:2015
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
RAPID: Understanding the Evolution Patterns of the Ebola Outbreak in West-Africa and Supporting Real-Time Decision Making and Hypothesis Testing through Large Scale Simulations
RAPID:了解西非埃博拉疫情的演变模式并通过大规模模拟支持实时决策和假设检验
- 批准号:
1518939 - 财政年份:2014
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
SI2-SSE: E-SDMS: Energy Simulation Data Management System Software
SI2-SSE:E-SDMS:能源模拟数据管理系统软件
- 批准号:
1339835 - 财政年份:2013
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
- 批准号:
2246796 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
- 批准号:
2311582 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
III: Small: Rethinking the Data Organization and Lifecycle in LSM Storage Systems
III:小:重新思考 LSM 存储系统中的数据组织和生命周期
- 批准号:
2227669 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
III: Small: Statistical Inference through Data-Collection and Expert-Knowledge Incorporation
III:小:通过数据收集和专家知识整合进行统计推断
- 批准号:
2311969 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
III: Small: Semantic Version Management in Data Lakes
III:小:数据湖中的语义版本管理
- 批准号:
2325632 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311597 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
III : Small : Integrating and Learning on Spatial Data via Multi-Agent Simulation
III:小:通过多智能体模拟集成和学习空间数据
- 批准号:
2311954 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
FET: III: Small: Innovative Approaches for Bias Correction and Systems-level Analysis in Integrated Multi-omics Data
FET:III:小型:集成多组学数据中的偏差校正和系统级分析的创新方法
- 批准号:
2203236 - 财政年份:2022
- 资助金额:
$ 49.96万 - 项目类别:
Continuing Grant














{{item.name}}会员




