BIGDATA: Collaborative Research: F: Discovering Context-Sensitive Impact in Complex Systems

BIGDATA:协作研究:F:发现复杂系统中的上下文敏感影响

基本信息

  • 批准号:
    1633381
  • 负责人:
  • 金额:
    $ 83.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Successfully tackling many urgent challenges in socio-economically critical domains (such as sustainability, public health, and biology) requires obtaining a deeper understanding of complex relationships and interactions among a diverse spectrum of entities in different contexts. In complex systems, (a) it is critical to discover how one object influences others within specific contexts, rather than seeking an overall measure of impact, and (b) the context-aware understanding of impact has the potential to transform the way people explore, search, and make decisions in complex systems. This project establishes the foundations of big data driven Context-Sensitive Impact Discovery (CSID) in complex systems and fills an important hole in big data driven decision making in many critical application domains, including epidemic preparedness, biological pathway analysis, climate, and resilient water/energy infrastructures. Thus, it enables applications and services with significant economic and health impact. The educational impacts of this project include the mentoring of graduate and undergraduate students, and the enhancement of graduate and undergraduate Computer Science curricula at both Arizona State University (ASU) and New Mexico State University (NMSU) through the incorporation of research challenges and outcomes into existing classes. The technical goal of this project is to establish the theoretical, algorithmic, and computational foundations of big data driven context-sensitive impact discovery in complex systems. This project develops probabilistic and tensor-based models to capture context-sensitive impact from complex systems, often modeled as graphs, and designs efficient learning algorithms that can capture both the contexts and the impact scores among entities within these different contexts. The modeling of the context sensitive impact considers dynamic nature of relevant contexts and the diverse applications. This requires addressing several major challenges, including latent contexts of impact, heterogeneous networks of entities, dynamicity of impact in varying contexts, and high computational and I/O costs of context-sensitive impact discovery. Therefore, this project designs novel scalable probabilistic and tensor-based algorithms to capture and represent context-sensitive impact. These algorithms and the novel data platforms they are deployed in are efficient and scalable in terms of off-line and on-line running times and their space requirements. To achieve necessary scalabilities, the developed platforms employ novel multi-resolution data partitioning and resource allocation strategies and the research enables massive parallelism and efficient data access through new non-volatile memory based data management techniques.
成功应对社会经济关键领域(如可持续性、公共卫生和生物学)的许多紧迫挑战,需要对不同背景下各种实体之间的复杂关系和相互作用有更深入的了解。在复杂系统中,(a)发现一个对象如何在特定环境中影响其他对象是至关重要的,而不是寻求影响的总体衡量标准;(b)对影响的上下文感知理解有可能改变人们在复杂系统中探索、搜索和决策的方式。该项目为复杂系统中大数据驱动的情境敏感影响发现(CSID)奠定了基础,填补了大数据驱动决策在许多关键应用领域的重要空白,包括流行病防范、生物途径分析、气候和弹性水/能源基础设施。因此,它使具有重大经济和健康影响的应用和服务成为可能。该项目的教育影响包括对研究生和本科生的指导,以及通过将研究挑战和成果纳入现有课程,加强亚利桑那州立大学(ASU)和新墨西哥州立大学(NMSU)的研究生和本科生计算机科学课程。该项目的技术目标是建立复杂系统中大数据驱动的上下文敏感影响发现的理论、算法和计算基础。该项目开发了基于概率和张量的模型,以捕获复杂系统中上下文敏感的影响,通常建模为图形,并设计了有效的学习算法,可以捕获上下文和这些不同上下文中实体之间的影响分数。上下文敏感影响的建模考虑了相关上下文和不同应用程序的动态特性。这需要解决几个主要挑战,包括潜在的影响背景、实体的异构网络、不同背景下影响的动态性,以及上下文敏感的影响发现的高计算和I/O成本。因此,该项目设计了新颖的可扩展概率和基于张量的算法来捕获和表示上下文敏感的影响。这些算法及其部署的新型数据平台在离线和在线运行时间以及空间要求方面具有高效和可扩展性。为了实现必要的可扩展性,开发的平台采用了新的多分辨率数据分区和资源分配策略,研究通过新的基于非易失性存储器的数据管理技术实现了大规模并行和高效的数据访问。

项目成果

期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
iSparse: Output Informed Sparsification of Neural Network
BICP: Block-Incremental CP Decomposition with Update Sensitive Refinement
BICP:具有更新敏感细化的块增量 CP 分解
  • DOI:
    10.1145/2983323.2983717
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huang, Shengyu;Candan, K. Selçuk;Sapino, Maria Luisa
  • 通讯作者:
    Sapino, Maria Luisa
M2TD: Multi-Task Tensor Decomposition for Sparse Ensemble Simulations
M2TD:稀疏集成模拟的多任务张量分解
GTT: Leveraging data characteristics for guiding the tensor train decomposition
GTT:利用数据特征指导张量序列分解
  • DOI:
    10.1016/j.is.2022.102047
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Li, Mao-Lin;Candan, K. Selçuk;Sapino, Maria Luisa
  • 通讯作者:
    Sapino, Maria Luisa
XM2A: Multi-Scale Multi-Head Attention with Cross-Talk for Multi-Variate Time Series Analysis
XM2A:用于多变量时间序列分析的具有串扰的多尺度多头注意力
  • DOI:
    10.1109/mipr51284.2021.00030
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Garg, Yash;Candan, K. Selcuk
  • 通讯作者:
    Candan, K. Selcuk
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kasim Candan其他文献

Kasim Candan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kasim Candan', 18)}}的其他基金

Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
SCC-IRG JST: PanCommunity: Leveraging Data and Models for Understanding and Improving Community Response in Pandemics
SCC-IRG JST:泛社区:利用数据和模型来理解和改善流行病中的社区响应
  • 批准号:
    2125246
  • 财政年份:
    2021
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Continuing Grant
Student Support for the 35th IEEE International Conference on Data Engineering (ICDE 2019)
第 35 届 IEEE 国际数据工程会议 (ICDE 2019) 的学生支持
  • 批准号:
    1922436
  • 财政年份:
    2019
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
III: Small: pCAR: Discovering and Leveraging Plausibly Causal (p-causal) Relationships to Understand Complex Dynamic Systems
III:小:pCAR:发现并利用看似合理的因果关系(p-因果)来理解复杂的动态系统
  • 批准号:
    1909555
  • 财政年份:
    2019
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Continuing Grant
CDS&E/Collaborative Research: DataStorm: A Data Enabled System for End-to-End Disaster Planning and Response
CDS
  • 批准号:
    1610282
  • 财政年份:
    2016
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
Student Travel Fellowships for ACM Symposium on Cloud Computing 2015
2015 年 ACM 云计算研讨会学生旅行奖学金
  • 批准号:
    1543935
  • 财政年份:
    2015
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Assured and SCAlable Data Engineering (CASCADE)
合作研究:规划补助金:I/UCRC 用于有保证和可扩展的数据工程 (CASCADE)
  • 批准号:
    1464579
  • 财政年份:
    2015
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
RAPID: Understanding the Evolution Patterns of the Ebola Outbreak in West-Africa and Supporting Real-Time Decision Making and Hypothesis Testing through Large Scale Simulations
RAPID:了解西非埃博拉疫情的演变模式并通过大规模模拟支持实时决策和假设检验
  • 批准号:
    1518939
  • 财政年份:
    2014
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
III: Small: Data Management for Real-Time Data Driven Epidemic Spread Simulations
III:小型:实时数据驱动的流行病传播模拟的数据管理
  • 批准号:
    1318788
  • 财政年份:
    2013
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Continuing Grant
SI2-SSE: E-SDMS: Energy Simulation Data Management System Software
SI2-SSE:E-SDMS:能源模拟数据管理系统软件
  • 批准号:
    1339835
  • 财政年份:
    2013
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 83.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了