EAGER: Collaborative: A Multi-Disciplinary Framework for Modeling Spatial, Temporal and Social Dynamics of Cyber Criminals

EAGER:协作:对网络犯罪分子的空间、时间和社会动态进行建模的多学科框架

基本信息

项目摘要

This project designs and deploys a multi-disciplinary framework to model spatial, temporal and social dynamics of cyber criminals. The framework fuses theories in both computer science and criminology. Specifically, project objectives are a) Apply and validate existing theories in the realm of general criminology (in particular Akers? social learning theory and Gottfredson and Hirschi?s general theory of crime) to study cyber crimes; b) Derive novel Internet usage features as fingerprints for cyber crimes; c) Design classification algorithms (based on multi-fractal analysis and petri-net designs) to subsequently model multiple dynamics of cyber criminals by integrating theoretical and practical outcomes from the above two objectives; and d) Extensively test and validate project outcomes. The core novelty of this project is in using real Internet data from subjects (initially a cyber savvy college sample) that is collected continuously, unobtrusively, while still preserving a high degree of privacy. Outcomes of this project will have far reaching impacts. It lays a foundation for fusing expertise in social sciences (specifically criminology) and cyber security, as a result of which existing theories in general criminology can be empirically tested for practical validity in studying cyber crimes. The identification of unique Internet fingerprints associating with cyber crimes will provide new insights into human centered aspects of cyber crimes, which is lacking today. The classification algorithms designed will provide cyber defenders with new tools to combat cyber crimes from multiple perspectives including prevention, detection, forensic investigations and prosecution.
该项目设计并部署了一个多学科框架来模拟网络犯罪分子的空间,时间和社会动态。该框架融合了计算机科学和犯罪学的理论。具体而言,项目目标是a)应用和验证一般犯罪学领域的现有理论(特别是阿克斯?社会学习理论和戈特弗雷德森和赫斯基?的一般犯罪理论),以研究网络犯罪; B)推导新的互联网使用的特点,作为指纹的网络犯罪; c)设计分类算法(基于多重分形分析和Petri网设计),随后通过整合上述两个目标的理论和实践成果,模拟网络罪犯的多种动态;和d)广泛测试和验证项目成果。这个项目的核心新奇在于使用来自受试者(最初是一个精通网络的大学样本)的真实的互联网数据,这些数据是连续收集的,不引人注目,同时仍然保持高度的隐私。该项目的成果将产生深远的影响。它为融合社会科学(特别是犯罪学)和网络安全领域的专业知识奠定了基础,因此可以对普通犯罪学中的现有理论进行经验检验,以验证其在研究网络犯罪时的实际有效性。识别与网络犯罪相关的独特互联网指纹将为以人为本的网络犯罪提供新的见解,这是今天所缺乏的。设计的分类算法将为网络防御者提供新的工具,从多个角度打击网络犯罪,包括预防,检测,法医调查和起诉。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Bossler其他文献

Adam Bossler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: EAGER: Advancing Reproducibility in Multi-Messenger Astrophysics
合作研究:EAGER:提高多信使天体物理学的可重复性
  • 批准号:
    2041878
  • 财政年份:
    2020
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Advancing Pedagogy and Inclusivity through Multi-modal Upper Level Geophysics Education
合作研究:EAGER:通过多模式高水平地球物理学教育推进教学法和包容性
  • 批准号:
    2041967
  • 财政年份:
    2020
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Advancing Reproducibility in Multi-Messenger Astrophysics
合作研究:EAGER:提高多信使天体物理学的可重复性
  • 批准号:
    2041901
  • 财政年份:
    2020
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Foundations of Secure Multi-Robot Computation
协作研究:EAGER:安全多机器人计算的基础
  • 批准号:
    2034097
  • 财政年份:
    2020
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Foundations of Secure Multi-Robot Computation
协作研究:EAGER:安全多机器人计算的基础
  • 批准号:
    2034123
  • 财政年份:
    2020
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Advancing Reproducibility in Multi-Messenger Astrophysics
合作研究:EAGER:提高多信使天体物理学的可重复性
  • 批准号:
    2041977
  • 财政年份:
    2020
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: A Multi-Network Architecture for Expanding Internet Participation and Community-Building on Native American Reservations
EAGER:协作研究:用于扩大美洲原住民保留地的互联网参与和社区建设的多网络架构
  • 批准号:
    1637265
  • 财政年份:
    2016
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: A Multi-Network Architecture for Expanding Internet Participation and Community-Building on Native American Reservations
EAGER:协作研究:用于扩大美洲原住民保留地的互联网参与和社区建设的多网络架构
  • 批准号:
    1637280
  • 财政年份:
    2016
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
EAGER: Collaborative: A Multi-Disciplinary Framework for Modeling Spatial, Temporal and Social Dynamics of Cyber Criminals
EAGER:协作:对网络犯罪分子的空间、时间和社会动态进行建模的多学科框架
  • 批准号:
    1343453
  • 财政年份:
    2013
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Holistically Application-Aware Multi-dimensional Cognitive Radio (HAMCR)
EAGER:协作研究:整体应用感知多维认知无线电(HAMCR)
  • 批准号:
    1352883
  • 财政年份:
    2013
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了