Collaborative Research: EAGER: Foundations of Secure Multi-Robot Computation

协作研究:EAGER:安全多机器人计算的基础

基本信息

  • 批准号:
    2034123
  • 负责人:
  • 金额:
    $ 9.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

As people are starting to face the prospect of robots becoming part of our everyday lives, it has become increasingly clear that the information robots could gather can be both sensitive and valuable. But the robots may need to gather this information in order to function properly: as elsewhere in our lives, we need to understand how to best reconcile the tension between utility and privacy. The scientific progress made to date on algorithms for planning, control, and coordination of multi-robot systems has been enormous, but it also has paid too little attention to "who knows what." This research effort sets out to understand how the essential computational operations underlying many common robotic tasks can be safely accomplished in circumstances where there is some doubt about the integrity of other elements in the system, including whether they can be trusted to never expose information. This is crucial for autonomous robots operating within socially sensitive settings, as well as contested or adversarial scenarios. Beyond the anticipated impact on robotics research, the project will benefit society by addressing questions of strategic national interest and help facilitate privacy protections. It includes education and outreach activities that serve underrepresented groups, firstly via direct engagement with undergraduate and graduate students at Florida International University and Texas A&M, and secondly, in working with and mentoring high school teachers. The project will conduct both theoretical and empirical research, through a multi-part research agenda that will enable privacy-preserving filtering and planning in multi-robot scenarios via secure multi-party computation methods. This research endeavor represents a radical departure from present computational assumptions for robots: it aims to introduce abstractions, algorithms, and systems to solve robot tasks in scenarios characterized by collaboration between mutually distrusting robots, this is the first systematic effort to do so. The research will allow multiple robots to coordinate their use of shared resources, without divulging sensitive information that each robot possesses, despite their effective cooperation actually depending on that sensitive information. The research program will produce: (1) a new set of geometric primitives that allow the solution of motion planning (and related) problems in a privacy-preserving fashion; (2) novel filters, constructed to preserve privacy; and (3) constructions for calculating and querying computational topology properties, subject to limits on information shared. Together, these pieces lay groundwork, establishing the research area of secure multi-robot computation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着人们开始面对机器人成为我们日常生活一部分的前景,越来越明显的是,机器人可以收集的信息既敏感又有价值。但机器人可能需要收集这些信息才能正常工作:就像我们生活中的其他地方一样,我们需要了解如何最好地协调效用和隐私之间的紧张关系。到目前为止,在多机器人系统的规划、控制和协调的算法方面取得了巨大的科学进步,但它也太少关注“谁知道是什么”。这项研究的目的是了解在系统中其他元素的完整性存在一些疑问的情况下,如何安全地完成许多常见机器人任务背后的基本计算操作,包括是否可以相信它们永远不会泄露信息。这对于在社会敏感环境中运行的自主机器人以及在竞争或敌对场景中运行的机器人来说至关重要。除了对机器人研究的预期影响外,该项目还将通过解决具有战略意义的国家利益问题来造福社会,并有助于促进隐私保护。它包括为代表不足的群体服务的教育和外联活动,首先是通过直接接触佛罗里达国际大学和德克萨斯农工大学的本科生和研究生,其次是与高中教师合作和指导。该项目将通过一个多部分研究议程进行理论和实证研究,该议程将通过安全的多方计算方法在多机器人场景中实现隐私保护过滤和规划。这项研究的努力代表了与目前对机器人的计算假设的根本背离:它的目标是引入抽象、算法和系统来解决以相互不信任的机器人之间的协作为特征的场景中的机器人任务,这是第一次这样做的系统性努力。这项研究将允许多个机器人协调它们对共享资源的使用,而不会泄露每个机器人拥有的敏感信息,尽管它们的有效合作实际上依赖于这些敏感信息。该研究计划将产生:(1)一组新的几何基元,允许以隐私保护的方式解决运动规划(和相关)问题;(2)为保护隐私而构建的新过滤器;以及(3)用于计算和查询计算拓扑属性的结构,受共享信息的限制。这些成果共同奠定了基础,确立了安全多机器人计算的研究领域。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Robot Information Gathering Subject to Resource Constraints
受资源限制的多机器人信息采集
Combining Remote and In-situ Sensing for Persistent Monitoring of Water Quality
结合遥感和现场传感来持续监测水质
  • DOI:
    10.1109/oceanschennai45887.2022.9775339
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rojas, Cesar A.;Reis, Gregory M.;Albayrak, Arif R.;Osmanoglu, Batuhan;Bobadilla, Leonardo;Smith, Ryan N.
  • 通讯作者:
    Smith, Ryan N.
Towards Learning Ocean Models for Long-term Navigation in Dynamic Environments
学习动态环境中长期导航的海洋模型
  • DOI:
    10.1109/oceanschennai45887.2022.9775460
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Padrao, Paulo;Dominguez, Alberto;Bobadilla, Leonardo;Smith, Ryan N.
  • 通讯作者:
    Smith, Ryan N.
Oblivious Markov Decision Processes: Planning and Policy Execution
忽视马尔可夫决策过程:规划和政策执行
  • DOI:
    10.1109/cdc49753.2023.10383231
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alsayegh, Murtadha;Fuentes, Jose;Bobadilla, Leonardo;Shell, Dylan A.
  • 通讯作者:
    Shell, Dylan A.
Digital Twins Utilizing XR-Technology as Robotic Training Tools
利用 XR 技术作为机器人培训工具的数字孪生
  • DOI:
    10.3390/machines11010013
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Kaarlela, Tero;Padrao, Paulo;Pitkäaho, Tomi;Pieskä, Sakari;Bobadilla, Leonardo
  • 通讯作者:
    Bobadilla, Leonardo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonardo Bobadilla其他文献

Characterizing and Predicting Catalytic Residues in Enzyme Active Sites Based on Local Properties: A Machine Learning Approach
基于局部特性表征和预测酶活性位点中的催化残基:一种机器学习方法
An Automated Methodology for Worker Path Generation and Safety Assessment in Construction Projects
建筑项目中工人路径生成和安全评估的自动化方法
A meta-analytic review of the relationship between empathy and oxytocin: Implications for application in psychopathy research
关于共情与催产素关系的元分析综述:对精神病学研究应用的启示
  • DOI:
    10.1016/j.avb.2023.101828
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Nicole Stark;Leonardo Bobadilla;Paul Michael;Sarina Saturn;Matt Portner
  • 通讯作者:
    Matt Portner
Minimalist multiple target tracking using directional sensor beams
使用定向传感器光束进行极简多目标跟踪
Feedback Motion Planning for Long-Range Autonomous Underwater Vehicles
远程自主水下航行器的反馈运动规划
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Opeyemi S. Orioke;Tauhidul Alam;J. Quinn;Ramneek Kaur;Wesam H. Alsabban;Leonardo Bobadilla;Ryan N. Smith
  • 通讯作者:
    Ryan N. Smith

Leonardo Bobadilla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonardo Bobadilla', 18)}}的其他基金

CC* Storage: EnviStor: A Repository for Supporting Collaborative Interdisciplinary Research on South Florida's Built and Natural Environments
CC* 存储:EnviStor:支持南佛罗里达州建筑和自然环境跨学科协作研究的存储库
  • 批准号:
    2322308
  • 财政年份:
    2023
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
NRI: FND: Extending Autonomy in Seemingly Sensory-Denied Environments Applied to Underwater Robots
NRI:FND:在看似无感知的环境中扩展自主性,应用于水下机器人
  • 批准号:
    2024733
  • 财政年份:
    2020
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了