An empirical investigation of patient preferences and the use of information when choosing medical treatment technologies

对患者偏好和选择医疗技术时信息使用的实证调查

基本信息

项目摘要

This project aims at examining the role of patient preferences and the use of information when patients choose medical treatment technologies. These aspects of patient behavior are of great interest for health economists and politicians alike because recent health care reforms, for example in Germany and the U.S., delegate decisions to patients. Reliable data on patient behavior is crucial both to modeling the effects of incentives in health care markets and to designing optimal policy interventions.Using experimental survey techniques and a random sample of the U.S. population, I would like to analyze how patients choose medical technologies in interaction with their physicians. Physicians act both as experts and suppliers of medical services. Thus, a physicians advice might be based not only on the patients utility but also on their own financial incentives. Given the physicians potential conflict of interest, it is important to investigate how alternative sources of information the government, insurers impact patients choices. The specific aims of the project are (i) to develop and implement an innovative survey instrument to measure patients preferences and to study the importance of alternative sources of information, (ii) to administer the survey in a representative sample, and (iii) to analyze the data using econometric models for discrete choice. I can prepare and implement the survey from January to April 2012 in collaboration with Prof. Arie Kapteyn at RAND, Santa Monica. An important reason to choose RAND as a host institution besides its excellent research infrastructure is the possibility to conduct the survey as part of a long-term project financed by the U.S. National Institutes of Health (NIH). The survey instrument will be implemented in the American Life Panel (ALP), an innovative internet panel that is hosted by RAND. A pilot study has already been successfully conducted.
该项目旨在研究患者选择医疗技术时患者偏好和信息使用的作用。病人行为的这些方面引起了卫生经济学家和政治家的极大兴趣,因为最近的医疗改革,例如在德国和美国,把决定权交给病人。关于患者行为的可靠数据对于医疗市场激励措施的效果建模和最优政策干预的设计都至关重要。我想利用实验调查技术和美国人口的随机样本,分析患者如何与医生互动选择医疗技术。医生既是专家,又是医疗服务的提供者。因此,医生的建议可能不仅基于患者的效用,而且基于他们自己的经济激励。考虑到医生潜在的利益冲突,重要的是要调查政府,保险公司的替代信息来源如何影响患者的选择。 该项目的具体目标是:(一)开发和实施一种创新的调查工具,以衡量患者的偏好,并研究替代信息来源的重要性,(二)管理调查的代表性样本,以及(三)分析数据使用计量经济学模型离散选择。我可以与圣莫尼卡兰德公司的Arie Kapteyn教授合作,从2012年1月到4月准备和实施调查。选择兰德作为主办机构的一个重要原因是,除了其出色的研究基础设施外,还可以作为美国国立卫生研究院(NIH)资助的长期项目的一部分进行调查。该调查工具将在美国生活小组(ALP)中实施,这是一个由兰德主持的创新互联网小组。已经成功地进行了一项试点研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Iris Kesternich其他文献

Professorin Dr. Iris Kesternich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The Demography of Chronic Pain: A Population Approach to Pain Trends, Pain Disparities, and Pain-Related Disability and Death
慢性疼痛的人口统计学:疼痛趋势、疼痛差异以及与疼痛相关的残疾和死亡的人群方法
  • 批准号:
    10618934
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10674548
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10267034
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10099785
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
The Demography of Chronic Pain: A Population Approach to Pain Trends, Pain Disparities, and Pain-Related Disability and Death
慢性疼痛的人口统计学:疼痛趋势、疼痛差异以及与疼痛相关的残疾和死亡的人群方法
  • 批准号:
    10410557
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10455006
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
The Demography of Chronic Pain: A Population Approach to Pain Trends, Pain Disparities, and Pain-Related Disability and Death
慢性疼痛的人口统计学:疼痛趋势、疼痛差异以及与疼痛相关的残疾和死亡的人群方法
  • 批准号:
    10240723
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Identifying the neurobehavioral signature of individuals with AUD and comorbid PTSD
识别患有 AUD 和共病 PTSD 的个体的神经行为特征
  • 批准号:
    10478079
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Identifying the neurobehavioral signature of individuals with AUD and comorbid PTSD
识别患有 AUD 和共病 PTSD 的个体的神经行为特征
  • 批准号:
    10245141
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Identifying the neurobehavioral signature of individuals with AUD and comorbid PTSD
识别患有 AUD 和共病 PTSD 的个体的神经行为特征
  • 批准号:
    10019441
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了