CAREER: Decision Theoretic Life Cycle Assessment

职业:决策理论生命周期评估

基本信息

  • 批准号:
    2047199
  • 负责人:
  • 金额:
    $ 50.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

This CAREER project aims to create a decision theoretic life cycle assessment (DT-LCA) framework to critically advance LCA’s predictive power and usefulness in support of decision-making. In particular, the project will use DT-LCA to address health, economic, and environmental aspects related to drinking water emergency planning and response. The goal is to enable LCA to address important questions regarding how various human decision factors influence sustainability outcomes, and in turn, how sustainability outcomes influence decision-making. The DT-LCA approach will use an immersive game-based approach to engage stakeholders in simplified but realistic decision scenarios. Unlike the deterministic LCA approach, DT-LCA simulates sustainability outcomes in an iterative, dynamic manner based upon actual decisions made by stakeholders during the game. It combines social experimenting, computer modeling, education, and outreach into one integrated framework.The research seeks to enhance the way LCA is conducted by tightly coupling it with stakeholder decision- making through serious gaming. Decision factors including risk attitudes, interorganizational networks, and access to LCA results will be introduced into the game’s experimental design to investigate their influences on sustainability outcomes. Stakeholder concept maps before and after game participation will be collected to study the influence of the DT-LCA on learning. These influences will be characterized by analyzing the quantitative and qualitative data obtained from the serious game through statistical and machine learning techniques, network analysis, and text mining. This project aims to generate new knowledge in 1) the influences of human decision factors including risk attitudes and interorganizational networks on sustainability outcomes; 2) the influences of knowledge about sustainability outcomes on decision-making; and, 3) the effectiveness of a tightly coupled decision-assessment framework on stakeholder learning as well as on improving the sustainability of drinking water emergency planning and response practices. This project will also result in the development of 1) a DT-LCA framework that allows for the tight coupling of assessment and decision-making; 2) a novel serious game for engaged learning about drinking water emergency planning and response; 3) a safety planning model and an emergency response model that incorporate various decision scenarios and the associated system responses; 4) a method to integrate impacts related to failure risks into sustainability measures; and, 5) a teaching packet that can be integrated into undergraduate and graduate level courses and be used by self-learners. This project will engage at least 50 stakeholders from New Hampshire along with additional water industry professionals and the general public through workshops and crowdsourcing. A teaching packet will be developed to encompass the game and the simulation tool from this project, and the teaching packet will be integrated into three undergraduate and graduate courses at University of New Hampshire (UNH). This is targeted to help students obtain new knowledge and skillsets that are critical to manage the complexity behind sustainability challenges. Key outcomes from the project will be further disseminated to a broader community through the UNH’s Research Experience for Teachers of Engineering (RETE) program, an existing science educator network (NHISE), conference workshops and presentations, webinars, social media posts, and journal publications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个CAREER项目旨在创建一个决策理论生命周期评估(DT-LCA)框架,以关键地提高LCA的预测能力和有用性,以支持决策。特别是,该项目将使用DT-LCA来解决与饮用水应急规划和响应有关的健康,经济和环境问题。 其目标是使LCA能够解决有关各种人类决策因素如何影响可持续性结果的重要问题,以及可持续性结果如何影响决策。DT-LCA方法将使用一种沉浸式的基于游戏的方法,让利益相关者参与简化但现实的决策场景。与确定性LCA方法不同,DT-LCA以迭代、动态的方式模拟可持续性结果,基于利益相关者在游戏期间做出的实际决策。它将社会实验、计算机建模、教育和推广结合到一个综合框架中。该研究旨在通过严肃的游戏将LCA与利益相关者的决策紧密结合起来,从而加强LCA的实施方式。决策因素,包括风险态度,组织间网络,并获得LCA结果将被引入到游戏的实验设计,以调查其对可持续发展的结果的影响。收集参与游戏前后的利益相关者概念图,研究DT-LCA对学习的影响。这些影响将通过统计和机器学习技术、网络分析和文本挖掘分析从严肃游戏中获得的定量和定性数据来表征。该项目旨在产生新的知识:1)人类决策因素,包括风险态度和组织间网络对可持续性成果的影响; 2)关于可持续性成果的知识对决策的影响;以及3)紧密耦合的决策评估框架对利益相关者学习的有效性以及改善饮用水应急规划和响应实践的可持续性。该项目还将导致1)DT-LCA框架的开发,该框架允许评估和决策的紧密耦合; 2)一个新的严肃游戏,用于参与学习饮用水应急规划和响应; 3)一个安全规划模型和一个应急响应模型,其中包含各种决策情景和相关的系统响应; 4)一种方法,将失败风险的影响纳入可持续性措施;和,5)一个教学包,可以集成到本科和研究生课程,并由自学者使用。该项目将通过研讨会和众包吸引至少50名来自新罕布什尔州的利益相关者沿着其他水务行业专业人士和公众的参与。将开发一个教学包,以包括游戏和模拟工具,从这个项目,和教学包将被集成到三个本科生和研究生课程在新罕布什尔州大学(UNH)。这旨在帮助学生获得新的知识和技能,这对管理可持续发展挑战背后的复杂性至关重要。该项目的主要成果将通过UNH的工程教师研究经验(RETE)计划,现有的科学教育家网络(NHISE),会议研讨会和演讲,网络研讨会,社交媒体帖子,该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Drinking Water Emergency Planning and Response in New Hampshire
新罕布什尔州饮用水应急规划和响应
  • DOI:
    10.1002/awwa.2037
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Cramton, Megan;Berg, Sara;Bixler, Taler S.;Huang, Jingyan;Mo, Weiwei
  • 通讯作者:
    Mo, Weiwei
Integrating knowledge co-production with life cycle assessment
将知识共同生产与生命周期评估相结合
  • DOI:
    10.1016/j.resconrec.2022.106650
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mo, Weiwei;Hart, David;Ashcraft, Catherine M.;Chester, Mikhail;Cucurachi, Stefano;Lu, Zhongming;Miller, Shelie A.
  • 通讯作者:
    Miller, Shelie A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weiwei Mo其他文献

Towards equitable infrastructure asset management: Scour maintenance strategy for aging bridge systems in flood-prone zones using deep reinforcement learning
  • DOI:
    10.1016/j.scs.2024.105792
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amir Taherkhani;Weiwei Mo;Erin Bell;Fei Han
  • 通讯作者:
    Fei Han
Human health, economic, and environmental impacts of emergency drinking water contamination events and response actions
紧急饮用水污染事件及应对行动对人类健康、经济和环境的影响
  • DOI:
    10.1016/j.resconrec.2025.108391
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    10.900
  • 作者:
    Taler S. Bixler;M.Robin Collins;Weiwei Mo
  • 通讯作者:
    Weiwei Mo
Reverse logistics for electric vehicle batteries: A systematic review
电动汽车电池逆向物流:系统综述
  • DOI:
    10.1016/j.cie.2025.111327
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    MD Mohiuddin;Lihui Bai;Weiwei Mo
  • 通讯作者:
    Weiwei Mo
Deep reinforcement learning-based optimization of an island energy-water microgrid system
基于深度强化学习的岛屿能源-水微电网系统优化
  • DOI:
    10.1016/j.resconrec.2025.108440
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    10.900
  • 作者:
    Roozbeh Ghasemi;Gersi Doko;Marek Petrik;Martin Wosnik;Zhongming Lu;Diane L. Foster;Weiwei Mo
  • 通讯作者:
    Weiwei Mo

Weiwei Mo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weiwei Mo', 18)}}的其他基金

FMRG: Eco: GOALI: CAS: Understanding the Sustainability Framework for Convergent In-Space Manufacturing
FMRG:Eco:GOALI:CAS:了解融合空间制造的可持续发展框架
  • 批准号:
    2328383
  • 财政年份:
    2023
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Standard Grant
EAGER: PPER: Development of a Contest-based Crowdsourcing Scheme for Public Water Quality Monitoring
EAGER:PPER:开发基于竞赛的公共水质监测众包计划
  • 批准号:
    1743997
  • 财政年份:
    2018
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Standard Grant
Resilience, Reliability, and Externalities of Integrated Centralized and Distributed Water and Energy Systems: The Integrated Water-Energy Dynamic (iWED) Model
综合集中式和分布式水和能源系统的弹性、可靠性和外部性:综合水-能源动态 (iWED) 模型
  • 批准号:
    1706143
  • 财政年份:
    2017
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Standard Grant
CRISP Type 1/Collaborative Research: Sustainable and Resilient Design of Interdependent Water and Energy Systems at the Infrastructure-Human-Resource Nexus
CRISP 类型 1/合作研究:基础设施-人力资源关系中相互依赖的水和能源系统的可持续和弹性设计
  • 批准号:
    1638334
  • 财政年份:
    2016
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
  • 批准号:
    10575550
  • 财政年份:
    2023
  • 资助金额:
    $ 50.71万
  • 项目类别:
Impact of decision theoretic models in information elicitation
决策理论模型对信息获取的影响
  • 批准号:
    RGPIN-2018-04005
  • 财政年份:
    2022
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Discovery Grants Program - Individual
Unifying Recent Advances in Deep Learning with Decision-theoretic Planning for Learned MDPs and POMDPs
将深度学习的最新进展与学习 MDP 和 POMDP 的决策理论规划相结合
  • 批准号:
    RGPIN-2022-04377
  • 财政年份:
    2022
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Discovery Grants Program - Individual
Impact of decision theoretic models in information elicitation
决策理论模型对信息获取的影响
  • 批准号:
    RGPIN-2018-04005
  • 财政年份:
    2021
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Discovery Grants Program - Individual
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
  • 批准号:
    RGPIN-2016-05705
  • 财政年份:
    2021
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Discovery Grants Program - Individual
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
  • 批准号:
    RGPIN-2016-05705
  • 财政年份:
    2020
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Discovery Grants Program - Individual
RI: Small: Exploiting Symmetries of Decision-Theoretic Planning for Autonomous Vehicles
RI:小:利用自动驾驶车辆决策理论规划的对称性
  • 批准号:
    2006886
  • 财政年份:
    2020
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Standard Grant
Algebraic and decision-theoretic ways into quantum resource theories
量子资源理论的代数和决策理论方法
  • 批准号:
    20K03746
  • 财政年份:
    2020
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Impact of decision theoretic models in information elicitation
决策理论模型对信息获取的影响
  • 批准号:
    RGPIN-2018-04005
  • 财政年份:
    2020
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Discovery Grants Program - Individual
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
  • 批准号:
    RGPIN-2016-05705
  • 财政年份:
    2019
  • 资助金额:
    $ 50.71万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了