Open Source Tools for Processing of Raw LiDAR Observations

用于处理原始 LiDAR 观测数据的开源工具

基本信息

  • 批准号:
    1347092
  • 负责人:
  • 金额:
    $ 20.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-04-01 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

This EAR Geoinformatics Program grant will support development of a suite of open source tools to allow users of Light detection and Ranging (LiDAR) data the ability to create point clouds and derivative products by starting at the raw LiDAR observations (i.e. range, angle, intensity, position, attitude), which is currently not possible using existing archived datasets and software. Broad objectives of this proposal are (a) to empower the researcher to exploit and tailor LiDAR post-processing to optimize data quality and meet science driven spatial and accuracy requirements and (b) to empower the scientist to focus on science questions without the need to consider time-consuming reformatting, data storage georeferencing and error estimation tasks. The developed tools would be amendable to both processing and analysis of airborne LiDAR, mobile laser scanning (MLS) observations, and static terrestrial (tripod) LiDAR data and would allow for tools to process full waveform observations. Scientific applications of high resolution LIDAR surface mapping span the fields of geomorphology, geodesy, hydrology, forestry, and resource management to name a few. The number of geoscientists employing LIDAR mapping for research is growing rapidly. A graduate student will be supported by this project and the resultant software will be distributed to users through the OpenTopography web portal and will be open source. Training with the developed tool set will be conducted through planned focused Earth science and remote sensing workshops.***
EAR地理信息学项目拨款将支持开发一套开源工具,使光探测和测距(LiDAR)数据的用户能够从原始LiDAR观测(即距离、角度、强度、位置、姿态)开始创建点云和衍生产品,目前使用现有存档数据集和软件是不可能实现的。该提案的主要目标是:(a)使研究人员能够利用和定制激光雷达后处理,以优化数据质量,满足科学驱动的空间和精度要求;(b)使科学家能够专注于科学问题,而无需考虑耗时的重新格式化、数据存储地理参考和误差估计任务。开发的工具将可用于处理和分析机载激光雷达、移动激光扫描(MLS)观测和静态地面(三脚架)激光雷达数据,并允许工具处理完整的波形观测。高分辨率激光雷达地表测绘的科学应用涵盖地貌学、大地测量学、水文学、林业和资源管理等领域。利用激光雷达测绘技术进行研究的地球科学家数量正在迅速增长。该项目将支持一名研究生,最终的软件将通过OpenTopography门户网站分发给用户,并将是开源的。将通过计划重点突出的地球科学和遥感讲习班对开发的工具集进行培训

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Craig Glennie其他文献

Deep Neural Networks with 3D Point Clouds for Empirical Friction Measurements in Hydrodynamic Flood Models
具有 3D 点云的深度神经网络用于水动力洪水模型中的经验摩擦测量
  • DOI:
    10.48550/arxiv.2404.02234
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francisco Haces;Vasileios Kotzamanis;Craig Glennie;Hanadi Rifai
  • 通讯作者:
    Hanadi Rifai
Monitoring volcanic COsub2/sub flux by the remote sensing of vegetation on Mt. Etna, Italy
通过意大利埃特纳火山植被的遥感监测火山二氧化碳通量
  • DOI:
    10.1016/j.rse.2024.114408
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    11.400
  • 作者:
    Nicole K. Guinn;Craig Glennie;Marco Liuzzo;Giovanni Giuffrida;Sergio Gurrieri
  • 通讯作者:
    Sergio Gurrieri

Craig Glennie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Craig Glennie', 18)}}的其他基金

Collaborative Research: Facility Support for Operation of the National Center for Airborne Laser Mapping (NCALM)
合作研究:国家机载激光测绘中心(NCALM)运行的设施支持
  • 批准号:
    1830734
  • 财政年份:
    2018
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Continuing Grant
Hazards SEES Type 1: Real-Time Geospatial Infrastructure Modeling for Disaster Response and Rapid Recovery
危害 SEES 类型 1:用于灾难响应和快速恢复的实时地理空间基础设施建模
  • 批准号:
    1331520
  • 财政年份:
    2013
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Standard Grant
Collaborative Research: 3-D Near-field Coseismic Deformation from Differential LiDAR with Application to the El Mayor-Cucapah Earthquake
合作研究:差分 LiDAR 的 3-D 近场同震变形及其在 El Mayor-Cucapah 地震中的应用
  • 批准号:
    1148319
  • 财政年份:
    2012
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Standard Grant

相似国自然基金

数学之源书(Source book in mathematics)的翻译与出版
  • 批准号:
    11826405
  • 批准年份:
    2018
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Open source software tools: improving accessibility, usability and versatility for bone and joint computed tomography image analysis
开源软件工具:提高骨和关节计算机断层扫描图像分析的可访问性、可用性和多功能性
  • 批准号:
    485107
  • 财政年份:
    2023
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Operating Grants
Understanding the Human-AI-interaction for open source artifact summarization tools
了解开源工件摘要工具的人机交互
  • 批准号:
    573536-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20.41万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: OpenDendro - Advanced Open-source Tools for Paleoenvironmental Reconstruction
合作研究:OpenDendro - 用于古环境重建的先进开源工具
  • 批准号:
    2054516
  • 财政年份:
    2021
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Standard Grant
Collaborative Research: OpenDendro - Advanced Open-source Tools for Paleoenvironmental Reconstruction
合作研究:OpenDendro - 用于古环境重建的先进开源工具
  • 批准号:
    2054515
  • 财政年份:
    2021
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Standard Grant
REU Site: The future of discovery: training students to build and apply open source machine learning models and tools
REU 网站:发现的未来:培训学生构建和应用开源机器学习模型和工具
  • 批准号:
    2050195
  • 财政年份:
    2021
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Standard Grant
Collaborative Research: OpenDendro - Advanced Open-source Tools for Paleoenvironmental Reconstruction
合作研究:OpenDendro - 用于古环境重建的先进开源工具
  • 批准号:
    2054514
  • 财政年份:
    2021
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Standard Grant
Elements: Open-source tools for block polymer phase behavior
Elements:用于嵌段聚合物相行为的开源工具
  • 批准号:
    2103627
  • 财政年份:
    2021
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Standard Grant
Implementing open source tools to visualize plant genome sequences
实施开源工具来可视化植物基因组序列
  • 批准号:
    562416-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 20.41万
  • 项目类别:
    University Undergraduate Student Research Awards
CCRI: Planning: Collaborative Proposal: Tools and Research Priority Analyses for Development of Open-Source AI-Enabled Control and Testing Framework for 6G Cellular Research
CCRI:规划:协作提案:为 6G 蜂窝研究开发开源人工智能控制和测试框架的工具和研究优先分析
  • 批准号:
    2016724
  • 财政年份:
    2020
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Standard Grant
CCRI: Planning: Collaborative Proposal: Tools and Research Priority Analyses for Development of Open-Source AI-Enabled Control and Testing Framework for 6G Cellular Research
CCRI:规划:协作提案:为 6G 蜂窝研究开发开源人工智能控制和测试框架的工具和研究优先分析
  • 批准号:
    2016688
  • 财政年份:
    2020
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了