Hazards SEES Type 1: Real-Time Geospatial Infrastructure Modeling for Disaster Response and Rapid Recovery
危害 SEES 类型 1:用于灾难响应和快速恢复的实时地理空间基础设施建模
基本信息
- 批准号:1331520
- 负责人:
- 金额:$ 29.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Accurate and timely information are essential to drive a coordinated and effective response to natural disasters; and the use of geospatial data for decision support and situational awareness is vital, as it provides critical information regarding conditions on the ground. Unfortunately, the real-time application of geospatial data is still hampered by significant bottlenecks that delay its availability to first responders, and by the lack of automated tools to analyze this information to prioritize actionable items and identify critical areas for response. This project will investigate ways to mitigate bottlenecks by integrating and testing a hardware and software solution that will capture, georeference data and disseminate to a distributed user group. GIS-based multi-infrastructure models will be developed that will assist first-responders in distilling large volumes of geospatial data into actionable items. The effort will focus on the LiDAR remote sensing data due to its unique ability to directly provide 3D mapping and change detection. To accomplish these tasks, three scientific investigations that are fundamental to real-time situational awareness will be pursued: (1) an investigation of spatial accuracy obtainable with geospatial data, (2) development of algorithms for real-time determination of high-resolution change, and, (3) dissemination of detected high-resolution 3D change through GIS-based multi-infrastructure models. In addition, the project will define automated process to analyze geospatial data in real-time to assist in the response to and rapid recovery from natural disasters. The real-time tools developed will allow the leveraging of existing LiDAR datasets as a baseline model for rapid change detection in the event of a natural disaster, and enable more effective response and quicker recovery from natural hazard occurrences.Natural hazards such as hurricanes and earthquakes can have significant impact on communities, as clearly evidenced by recent hurricanes Sandy and Ike, and the 2011 Tôhoku earthquake in Japan. Regrettably, the occurrence of both hurricanes and earthquakes is beyond our control. However, can be controlled is the response to these events to minimize their impact and spur post-event recovery. Currently, in the aftermath of natural events, decision makers are hampered by the inefficient dissemination of information regarding the location, scale and nature of the devastation. To mitigate these challenges, the research team will develop a set of real-time software tools to enable the analysis of geospatial information to define a set of prioritized actionable items that will speed the response to, and aid in the rapid recovery from natural disasters. This project brings together a multi-disciplinary team of researchers and students, and experts in emergency response to earthquakes and hurricanes from California and Texas to develop real-time models for effective dissemination of geospatial information for rapid and coordinated response to natural hazards.
准确和及时的信息对于推动对自然灾害作出协调和有效的反应至关重要;地理空间数据用于决策支持和态势感知至关重要,因为它提供了有关地面条件的关键信息。不幸的是,地理空间数据的实时应用仍然受到严重瓶颈的阻碍,这些瓶颈延迟了对第一响应者的可用性,并且缺乏自动化工具来分析这些信息,以确定可采取行动的项目的优先次序并确定关键的响应领域。该项目将通过集成和测试硬件和软件解决方案来研究缓解瓶颈的方法,该解决方案将捕获、参考数据并传播给分布式用户组。将开发基于地理信息系统的多基础设施模型,帮助第一反应者将大量地理空间数据提炼成可操作的项目。由于激光雷达遥感数据具有直接提供3D测绘和变化检测的独特能力,因此该项目将重点关注激光雷达遥感数据。为了完成这些任务,将进行三项对实时态势感知至关重要的科学研究:(1)研究地理空间数据可获得的空间精度;(2)开发实时确定高分辨率变化的算法;(3)通过基于gis的多基础设施模型传播检测到的高分辨率3D变化。此外,该项目将定义实时分析地理空间数据的自动化过程,以协助对自然灾害的响应和快速恢复。开发的实时工具将允许利用现有的激光雷达数据集作为基线模型,在发生自然灾害时进行快速变化检测,并实现更有效的响应和更快的自然灾害恢复。飓风和地震等自然灾害可能对社区产生重大影响,最近的飓风桑迪和艾克以及2011年Tôhoku日本地震就清楚地证明了这一点。遗憾的是,飓风和地震的发生都是我们无法控制的。然而,可以控制的是对这些事件的反应,以尽量减少其影响并刺激事件后的恢复。目前,在自然事件发生后,决策者受到关于灾害地点、规模和性质的信息传播效率低下的阻碍。为了减轻这些挑战,研究小组将开发一套实时软件工具,使地理空间信息分析能够确定一套优先可行的项目,这将加快对自然灾害的反应,并帮助从自然灾害中快速恢复。该项目汇集了一个多学科的研究人员和学生团队,以及来自加利福尼亚州和德克萨斯州的地震和飓风应急专家,以开发实时模型,有效传播地理空间信息,以便对自然灾害作出快速和协调的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Craig Glennie其他文献
Deep Neural Networks with 3D Point Clouds for Empirical Friction Measurements in Hydrodynamic Flood Models
具有 3D 点云的深度神经网络用于水动力洪水模型中的经验摩擦测量
- DOI:
10.48550/arxiv.2404.02234 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Francisco Haces;Vasileios Kotzamanis;Craig Glennie;Hanadi Rifai - 通讯作者:
Hanadi Rifai
Monitoring volcanic COsub2/sub flux by the remote sensing of vegetation on Mt. Etna, Italy
通过意大利埃特纳火山植被的遥感监测火山二氧化碳通量
- DOI:
10.1016/j.rse.2024.114408 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:11.400
- 作者:
Nicole K. Guinn;Craig Glennie;Marco Liuzzo;Giovanni Giuffrida;Sergio Gurrieri - 通讯作者:
Sergio Gurrieri
Craig Glennie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Craig Glennie', 18)}}的其他基金
Collaborative Research: Facility Support for Operation of the National Center for Airborne Laser Mapping (NCALM)
合作研究:国家机载激光测绘中心(NCALM)运行的设施支持
- 批准号:
1830734 - 财政年份:2018
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Open Source Tools for Processing of Raw LiDAR Observations
用于处理原始 LiDAR 观测数据的开源工具
- 批准号:
1347092 - 财政年份:2014
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Collaborative Research: 3-D Near-field Coseismic Deformation from Differential LiDAR with Application to the El Mayor-Cucapah Earthquake
合作研究:差分 LiDAR 的 3-D 近场同震变形及其在 El Mayor-Cucapah 地震中的应用
- 批准号:
1148319 - 财政年份:2012
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
相似海外基金
Hazards SEES Type 2: Modeling to Promote Regional Resilience to Repeated Heat Waves and Hurricanes
灾害 SEES 类型 2:建立模型以提高区域对反复出现的热浪和飓风的抵御能力
- 批准号:
1631409 - 财政年份:2015
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Hazards SEES Type 2: From Sensors to Tweeters: A Sustainable Sociotechnical Approach for Detecting, Mitigating, and Building Resilience to Hazards
危害 SEES 类型 2:从传感器到高音扬声器:用于检测、缓解和增强危害抵御能力的可持续社会技术方法
- 批准号:
1331463 - 财政年份:2013
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Hazards SEES Type 2: Hazard Prediction and Communication Dynamics in the Modern Information Environment
危害 SEES 类型 2:现代信息环境中的危害预测和沟通动态
- 批准号:
1331490 - 财政年份:2013
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Hazards SEES Type 2: Next Generation, Resilient Warning Systems for Tornados and Flash Floods
危害 SEES 类型 2:针对龙卷风和山洪的下一代弹性预警系统
- 批准号:
1331572 - 财政年份:2013
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Hazards SEES Type 2: Magnitude 9 Earthquake Scenarios - Probabilistic Modeling, Warnings, Response and Resilience in the Pacific Northwest
灾害 SEES 2 类:9 级地震情景 - 太平洋西北地区的概率建模、警告、响应和复原力
- 批准号:
1331412 - 财政年份:2013
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Hazards SEES Type 2: Preventing Flood Hazards from Becoming Disasters through Two-Way Communication of Parcel-Level Flood Risk
灾害 SEES 类型 2:通过地块级洪水风险的双向沟通,防止洪水灾害演变成灾难
- 批准号:
1331611 - 财政年份:2013
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Hazards SEES Type 2: WIFIRE: A Scalable Data-Driven Monitoring, Dynamic Prediction and Resilience Cyberinfrastructure for Wildfires
Hazards SEES 类型 2:WIFIRE:可扩展的数据驱动型野火监控、动态预测和弹性网络基础设施
- 批准号:
1331615 - 财政年份:2013
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Hazards SEES Type 2: Modeling to Promote Regional Resilience to Repeated Heat Waves and Hurricanes
灾害 SEES 类型 2:建立模型以提高区域对反复出现的热浪和飓风的抵御能力
- 批准号:
1331399 - 财政年份:2013
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Hazards SEES Type 1: End-to-End Development of Time-Dependent Geo-targeted Alerts and Warnings Enabled by Dense Observations of the 2011 Tohoku Tsunami
危害 SEES 类型 1:通过对 2011 年东北海啸的密集观测实现依赖时间的地理目标警报和警告的端到端开发
- 批准号:
1331600 - 财政年份:2013
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Hazards SEES Type 2: Dynamic Integration of Natural, Human, and Infrastructure Systems for Hurricane Evacuation and Sheltering
灾害 SEES 类型 2:飓风疏散和庇护的自然、人类和基础设施系统的动态整合
- 批准号:
1331269 - 财政年份:2013
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant