EAGER: Novel photoacoustic sensor using piezoresistive GaN microcantilever
EAGER:使用压阻式 GaN 微悬臂梁的新型光声传感器
基本信息
- 批准号:1348166
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the EAGER research is to explore the feasibility of developing a novel photoacoustic chemical and biological sensor utilizing vacuum enclosed piezoresistive GaN microcantilever as a highly sensitive ultrasonic sensing element. The sensor will be utilized to perform detection in both air and liquid media and can potentially offer: (i) detection of surface adsorbed or deposited analytes at femtogram level with high specificity, and (ii) unique label-free detection of bio-analytes in a liquid medium. Ultra high sensitivity of the sensor will be attained using a resonant GaN microcantilever enclosed in vacuum, with integrated AlGaN/GaN heterostructure field effect transistor as a highly sensitive deflection transducer. To attain the basic objective of this project, the following tasks will be performed:(i) Design of the photoacoustic sensor through theoretical modeling and finite element simulations; (ii) Fabrication of the piezoresistive microcantilever and integration of microfluidic channels; (iii) Packaging and electromechanical characterization of the sensor; and (iv) Performance evaluation of the sensor for analyte detection in air and liquid media Piezoresistive GaN microcantilevers will be fabricated using standard photolithographic process and packaged in high vacuum to achieve high resonance quality factor. For detection in air, surface deposited or adsorbed analyte near the cantilever base will be exposed to IR radiation to perform highly sensitive and selective detection, based on photoacoustic waves generated in solid. For detection in liquid, a PDMS based analyte reservoir connected to microfluidic channels will be patterned near the cantilever base, which will allow analyte flow and combined spectroscopic and multimodal detection of blood cells. The fabrication of the microcantilever sensors will be performed at the Georgia Tech Nanofabrication Facility, while the sensor packaging will be done in the PI's lab at USC. Intellectual Merit:The proposed EAGER research will focus on validating novel sensing concepts that can lead to the development of high-performance and versatile sensors with much superior characteristics compared to the state-of-the-art sensing technologies for analytes in air and liquid media. Firstly, the proposed piezoresistive microcantilever sensors is expected to exhibit orders of magnitude higher sensitivity compared to the state-of-the-art Si cantilevers due to the unique piezoelectric properties of III-V Nitride semiconductors. Secondly, the innovative concept of vacuum enclosure of the resonant microcantilever sensor coupled with photoacosutic sensing, will further enhance the sensitivity by orders of magnitude due to quality factor enhancement, while completely eliminating cantilever degradation, which is a major challenge for cantilever sensors utilizing functionalization layers for detection. Thirdly, integration of microfluidic channels and functionalization layers to concentrate the analytes near the cantilever base will minimize signal loss, and tremendously increases signal-to-noise ratio, thereby eliminating the need for acoustic focusing and confinement using a macroscopic cell, which is a significant drawback for current state-of-the-art photoacoustic sensors. Overall, the EAGER research can have a transformative impact on the science and technology of piezoresistive cantilever sensors and photoacoustic sensing methodologies, spurring aggressive development of next generation of miniaturized and high performance photoacoustic sensors.Broader Impacts:This highly interdisciplinary project is anticipated to result in the development of novel photoacoustic sensors with potential applications in the diverse fields of defense, homeland security, environmental monitoring, drug discovery, implantable sensors, and disease diagnosis and prognosis. As a part of the educational and outreach activities, the PI would involve at least one undergraduate and one high school student to work on this project every year throughout its duration. Participation of the project activities would provide broad interdisciplinary training of the graduate student involved. The PI would integrate research results in a graduate course, and disseminate them through conference participation and various websites.
EAGER研究的目的是探索开发一种新型的光声化学和生物传感器的可行性,利用真空封闭的压阻GaN微悬臂梁作为高灵敏度的超声传感元件。该传感器将用于在空气和液体介质中进行检测,并且可以潜在地提供:(i)以高特异性在毫微微克水平检测表面吸附或沉积的分析物,以及(ii)液体介质中生物分析物的独特无标记检测。超高灵敏度的传感器将获得使用谐振GaN微悬臂梁封闭在真空中,集成AlGaN/GaN异质结场效应晶体管作为一个高灵敏度的偏转传感器。为实现本项目的基本目标,将开展以下工作:(一)通过理论建模和有限元模拟设计光声传感器;(二)制作压阻式微悬臂梁和集成微流体通道;(三)传感器的封装和机电特性;(四)传感器的设计和制造;(五)传感器的设计和制造;(六)传感器的设计和制造;(七)传感器的设计和制造;(八)传感器的设计和制造。和(四)用于空气和液体介质中分析物检测的传感器的性能评估压阻GaN微悬臂梁将使用标准的在高真空中进行封装以实现高谐振品质因数。对于在空气中的检测,基于在固体中产生的光声波,悬臂基底附近的表面沉积或吸附的分析物将暴露于IR辐射以执行高度灵敏和选择性的检测。对于液体中的检测,连接到微流体通道的基于PDMS的分析物储存器将在悬臂基底附近图案化,这将允许分析物流动以及血细胞的组合光谱和多模式检测。微悬臂梁传感器的制造将在格鲁吉亚技术纳米工厂进行,而传感器的包装将在南加州大学的PI实验室完成。 智力优势:拟议的EAGER研究将侧重于验证新的传感概念,这些概念可以导致开发高性能和多功能传感器,与最先进的空气和液体介质中分析物的传感技术相比,这些传感器具有更上级的特性。首先,由于III-V族氮化物半导体独特的压电特性,与最先进的Si悬臂梁相比,所提出的压阻式微悬臂梁传感器预计将表现出更高的灵敏度。其次,谐振微悬臂梁传感器的真空外壳与光声传感相结合的创新概念将由于品质因数的提高而进一步提高灵敏度,同时完全消除悬臂梁退化,这是利用功能化层进行检测的悬臂梁传感器的主要挑战。第三,集成微流体通道和功能化层以将分析物集中在悬臂基底附近将使信号损失最小化,并且极大地增加信噪比,从而消除对使用宏观单元的声学聚焦和限制的需要,这是当前最先进的光声传感器的显著缺点。总体而言,EAGER的研究可以对压阻悬臂梁传感器和光声传感方法的科学和技术产生变革性的影响,刺激下一代小型化和高性能光声传感器的积极发展。更广泛的影响:这个高度跨学科的项目预计将导致新型光声传感器的发展,在国防,国土安全,环境监测,药物发现,植入式传感器以及疾病诊断和预后的不同领域具有潜在的应用。作为教育和推广活动的一部分,PI将涉及至少一名本科生和一名高中生在整个项目期间每年从事该项目的工作。参加项目活动将为所涉研究生提供广泛的跨学科培训。研究所将把研究成果纳入研究生课程,并通过参加会议和各种网站传播这些成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Goutam Koley其他文献
P(VDF-TrFE)/carbon black composite thin film based flexible piezoresistive pressure sensor with high sensitivity for low-pressure detection
基于聚偏氟乙烯-三氟乙烯/炭黑复合薄膜的用于低压检测的高灵敏度柔性压阻式压力传感器
- DOI:
10.1016/j.matdes.2025.114201 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:7.900
- 作者:
Lavanya Muthusamy;Balaadithya Uppalapati;Manav Bava;Goutam Koley - 通讯作者:
Goutam Koley
Goutam Koley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Goutam Koley', 18)}}的其他基金
PFI-TT: High Performance Pressure Sensors for High Temperature Operations
PFI-TT:适用于高温操作的高性能压力传感器
- 批准号:
2234512 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Novel microcantilever sensor using plasmonically enhanced nonlinearity
利用等离子体增强非线性的新型微悬臂梁传感器
- 批准号:
1809891 - 财政年份:2018
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Novel Graphene-based Label-free Biosensor Array for Smart Health and Drug Discovery
用于智能健康和药物发现的新型基于石墨烯的无标记生物传感器阵列
- 批准号:
1606882 - 财政年份:2016
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
PFI:AIR - TT: Novel Low-power III-Nitride Heater Cantilever Based Selective VOC Sensor
PFI:AIR - TT:新型低功耗 III 族氮化物加热器悬臂梁选择性 VOC 传感器
- 批准号:
1602006 - 财政年份:2016
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
CAREER: InN nanowire based multifunctional nanocantilever sensors
职业:基于 InN 纳米线的多功能纳米悬臂梁传感器
- 批准号:
1559711 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Air Option 1: Technology Translation - Functionalized III-V Nitride based Microelectromechanical Sensors for Neutron Detection
Air 选项 1:技术转化 - 用于中子检测的功能化 III-V 氮化物基微机电传感器
- 批准号:
1512342 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: Novel photoacoustic sensor using piezoresistive GaN microcantilever
EAGER:使用压阻式 GaN 微悬臂梁的新型光声传感器
- 批准号:
1500007 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Air Option 1: Technology Translation - Functionalized III-V Nitride based Microelectromechanical Sensors for Neutron Detection
Air 选项 1:技术转化 - 用于中子检测的功能化 III-V 氮化物基微机电传感器
- 批准号:
1343437 - 财政年份:2013
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Nanoelectromechanical uncooled infrared sensor using epitaxial graphene
使用外延石墨烯的纳米机电非制冷红外传感器
- 批准号:
1029346 - 财政年份:2010
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
CAREER: InN nanowire based multifunctional nanocantilever sensors
职业:基于 InN 纳米线的多功能纳米悬臂梁传感器
- 批准号:
0846898 - 财政年份:2009
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel nanoparticles to stimulate therapeutic angiogenesis in peripheral arterial disease
刺激外周动脉疾病治疗性血管生成的新型纳米颗粒
- 批准号:
10462909 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Fundamental studies and novel approaches enabling the generation and characterization of ultrasound and photoacoustic contrast to probe the structure and function of cells, biomaterials and biological systems
基础研究和新方法能够产生和表征超声波和光声对比度,以探测细胞、生物材料和生物系统的结构和功能
- 批准号:
RGPIN-2022-04143 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual
Fundamental studies and novel approaches enabling the generation and characterization of ultrasound and photoacoustic contrast to probe the structure and function of cells, biomaterials and biological systems
基础研究和新方法能够产生和表征超声波和光声对比度,以探测细胞、生物材料和生物系统的结构和功能
- 批准号:
DGDND-2022-04143 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Novel nanoparticles to stimulate therapeutic angiogenesis in peripheral arterial disease
刺激外周动脉疾病治疗性血管生成的新型纳米颗粒
- 批准号:
10756875 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Novel nanoparticles to stimulate therapeutic angiogenesis in peripheral arterial disease
刺激外周动脉疾病治疗性血管生成的新型纳米颗粒
- 批准号:
10616740 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Novel measurements of aerosol thermodynamic and optical properties using phase shift photoacoustic spectroscopy
使用相移光声光谱法测量气溶胶热力学和光学特性
- 批准号:
2597742 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Studentship
Novel multispectral optoacoustic tomography contrast agents for evaluation of early response to radiation therapy
用于评估放射治疗早期反应的新型多光谱光声断层扫描造影剂
- 批准号:
10325485 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Novel photoacoustic imaging using femtosecond frequency comb readout
使用飞秒频率梳读出的新型光声成像
- 批准号:
550040-2020 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
University Undergraduate Student Research Awards
Novel method to quantify conditioned fear-based neuronal activity in rat brain in vivo using high-resolution photoacoustic imaging
使用高分辨率光声成像量化大鼠大脑体内基于条件恐惧的神经元活动的新方法
- 批准号:
10205958 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Novel method to quantify conditioned fear-based neuronal activity in rat brain in vivo using high-resolution photoacoustic imaging
使用高分辨率光声成像量化大鼠大脑体内基于条件恐惧的神经元活动的新方法
- 批准号:
10653944 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别: