EAGER: Understanding fundamental mechanisms involved in turbulence, current and wave interactions for offshore wind-turbines

EAGER:了解海上风力涡轮机湍流、水流和波浪相互作用的基本机制

基本信息

  • 批准号:
    1348480
  • 负责人:
  • 金额:
    $ 4.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

PI: Bhaganagar, KiranProposal Number: 1348480Institution: University of Texas at San AntonioTitle: EAGER: Understanding fundamental mechanisms involved in turbulence, current and wave interactions for offshore wind-turbinesThe wake-wake interactions are quite substantial in an offshore wind turbines (WT) compared to onshore WT due to additional loading that arises due to sea current and wave-induced forcing. The effect of wave forcing on the wakes has been one of the important bottlenecks in the design of offshore WT. Though wind energy has matured to a technology, still offshore WT has not been realized in United States yet. To address this concern, there is a strong impetus to advance fundamental understanding of key external factors limiting the wind farms performance. Towards this direction, this project will address the challenges involved in the wake-current-air interactions by using large eddy simulation (LES) as a tool to systematically understand the effect of wave/current amplitude forcing and wind speed on the wake-wake interactions. The objectives of the current study are to determine the hydrodynamic forces due to the wave-current interaction on wind turbines. The PI will develop scaling laws of the mean and turbulence flow in the wake region in terms of dynamic forcing parameters. The scaling laws developed will be compared with the existing wakemodels.The intellectual merit of this study is that it is fundamental in nature as by understanding the interplay of key hydrodynamic and aerodynamic processes affecting the WT, we will be able to lay down the scaling laws of the loss of wind velocity and enhancement of turbulence intensity in terms of the dynamic parameters of wave/current/wind in the wake region. The research is transformative as these scaling laws in the near-wake region of offshore WT will provide, for the first time, accurate parameterization for the existing wake models. The present study will advance the fundamental understanding of the following 3 fundamental aspects in the wake region of offshore WT: (1) Scaling of modified surface roughness, mean velocity deficit and turbulence in the wake region (2) Understanding resonance due to the nonlinear response of the wave energy (3) Isolating the wave-generated turbulence, WT-generated turbulence and turbulence due to wind.The broader impacts of this project are its direct relevance to energy crisis in United States, where there is an urgent need to make wind energy more accessible, and a major source of sustainable form of energy. The results of this study will provide more realistic predictive tools, which will serve as important guidelines for future of offshore wind-farm installations. Specific efforts are being targeted as a part of this proposal to encourage more women to pursue education and careers in engineering.
主要研究者:Bhaganagar,Kiran提案编号:1348480机构:德克萨斯大学圣安东尼奥分校标题:EAGER:理解海上风力涡轮机湍流、水流和波浪相互作用的基本机制与陆上风力涡轮机相比,海上风力涡轮机(WT)中的尾流-尾流相互作用相当大,这是由于海流和波浪引起的强迫产生的额外载荷。波浪强迫对尾流的影响一直是海上WT设计的重要瓶颈之一。虽然风能已经成为一项成熟的技术,但在美国仍然没有实现海上WT。为了解决这一问题,有一个强大的动力,以促进对限制风电场性能的关键外部因素的基本理解。朝着这个方向,本项目将解决的挑战,在尾流-空气相互作用,通过使用大涡模拟(LES)作为一种工具,系统地了解波/电流的振幅强迫和风速的影响尾流相互作用。当前研究的目的是确定由于波浪-水流相互作用对风力涡轮机的水动力。 PI将根据动态强迫参数制定尾流区平均流和湍流的标度律。 这项研究的智慧价值在于,它是基本的,因为通过了解影响WT的关键水动力和空气动力过程的相互作用,我们将能够根据尾流区的波/流/风的动力学参数制定风速损失和湍流强度增强的标度律。这项研究是变革性的,因为海上WT近尾流区域的这些比例律将首次为现有尾流模型提供准确的参数化。本研究将促进对海上WT尾流区以下3个基本方面的基本理解:(1)修正表面粗糙度、尾流区域中的平均速度不足和湍流的标度(2)理解由于波能的非线性响应引起的共振(3)隔离波产生的湍流,该项目的更广泛影响是与美国的能源危机直接相关,美国迫切需要使风能更容易获得,并成为可持续能源的主要来源。本研究的结果将提供更现实的预测工具,这将作为重要的指导方针,为未来的海上风电场安装。作为这项建议的一部分,正在作出具体努力,鼓励更多的妇女接受工程教育和从事工程职业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kiran Bhaganagar其他文献

Using fuzzy logic for morphological classification of IVUS-based plaques in diseased coronary artery in the context of flow-dynamics
在血流动力学背景下,使用模糊逻辑对病变冠状动脉中基于 IVUS 的斑块进行形态学分类
New findings in vorticity dynamics of turbulent buoyant plumes
湍流浮力羽流涡度动力学的新发现
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Chen;Kiran Bhaganagar
  • 通讯作者:
    Kiran Bhaganagar
Editorial: Tributes to the lasting legacy of John Leask Lumley in turbulence: A perfect man in an imperfect world
社论:向动荡中的约翰·利斯克·拉姆利 (John Leask Lumley) 留下的持久遗产致敬:不完美世界中的完美人
  • DOI:
    10.1063/1.4977074
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Kiran Bhaganagar
  • 通讯作者:
    Kiran Bhaganagar
Accelerated Elliptical PDE Solver for Computational Fluid Dynamics Based on Configurable U-Net Architecture: Analogy to V-Cycle Multigrid
  • DOI:
    10.1007/s11633-024-1521-5
  • 发表时间:
    2025-02-21
  • 期刊:
  • 影响因子:
    8.700
  • 作者:
    Kiran Bhaganagar;David Chambers
  • 通讯作者:
    David Chambers
Scientific Reports: The Role Of Airborne Moments In The Spread Of The Coronavirus And The Course Of The Pandemic
科学报告:空中时刻在冠状病毒传播和大流行过程中的作用
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kiran Bhaganagar;S. Bhimireddy
  • 通讯作者:
    S. Bhimireddy

Kiran Bhaganagar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kiran Bhaganagar', 18)}}的其他基金

Collaborative Research: Entrainment in Dense Currents over a Rough Bottom
合作研究:粗糙底部浓密水流的夹带
  • 批准号:
    1333033
  • 财政年份:
    2013
  • 资助金额:
    $ 4.51万
  • 项目类别:
    Standard Grant
Understanding stratification and wake evolution due to thermal fields for wind-turbine array over a rough-terrain
了解崎岖地形上风力涡轮机阵列的热场导致的分层和尾流演化
  • 批准号:
    1242180
  • 财政年份:
    2012
  • 资助金额:
    $ 4.51万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Understanding Collisionless Magnetic Reconnection as a Fundamental Heliospheric Process
职业:理解无碰撞磁重联作为基本的日光层过程
  • 批准号:
    2338131
  • 财政年份:
    2024
  • 资助金额:
    $ 4.51万
  • 项目类别:
    Continuing Grant
Can we heal people using electricity? Developing fundamental understanding and bioelectronic devices to exploit bioelectricity in bioengineering.
我们可以用电来治愈人们吗?
  • 批准号:
    MR/X032159/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.51万
  • 项目类别:
    Fellowship
Understanding Fundamental Mechanisms that Underlie Nano-Neuro Interactions
了解纳米神经相互作用的基本机制
  • 批准号:
    2331330
  • 财政年份:
    2024
  • 资助金额:
    $ 4.51万
  • 项目类别:
    Standard Grant
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    $ 4.51万
  • 项目类别:
    Standard Grant
CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    $ 4.51万
  • 项目类别:
    Standard Grant
Fundamental understanding of turbulent flow over fluid-saturated complex porous media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W03350X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.51万
  • 项目类别:
    Research Grant
Fundamental Understanding of Chemical Complexity on Crack Tip Plasticity of Refractory Complex Concentrated Alloys
化学复杂性对难熔复合浓缩合金裂纹尖端塑性的基本认识
  • 批准号:
    2316762
  • 财政年份:
    2023
  • 资助金额:
    $ 4.51万
  • 项目类别:
    Continuing Grant
Fundamental Understanding of Turbulent Flow over Fluid-Saturated Complex Porous Media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W033550/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.51万
  • 项目类别:
    Research Grant
Toward Improved Understanding of Fundamental Processes Controlling the Size-Resolved Properties of Particles in the Stratosphere
提高对控制平流层粒子尺寸分辨特性的基本过程的理解
  • 批准号:
    2325458
  • 财政年份:
    2023
  • 资助金额:
    $ 4.51万
  • 项目类别:
    Continuing Grant
ERI: Increasing the Fundamental Understanding of the Auxetic Behavior of Graphene Oxide Membranes
ERI:增加对氧化石墨烯膜拉胀行为的基本了解
  • 批准号:
    2301838
  • 财政年份:
    2023
  • 资助金额:
    $ 4.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了