Understanding Fundamental Mechanisms that Underlie Nano-Neuro Interactions

了解纳米神经相互作用的基本机制

基本信息

  • 批准号:
    2331330
  • 负责人:
  • 金额:
    $ 57.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Nanoparticles exhibit unique physical and chemical properties that are distinct from their bulk counterparts. Because of their tiny size and unique properties, nanoparticles have unique advantages as devices that can both sense and stimulate nerve cells (neurons). These unique properties can also be harnessed to develop new technologies that will help us in understanding how the brain works and in overcoming brain-related conditions such as Parkinson’s disease and epilepsy. Furthermore, nanomaterials are increasingly becoming common in everyday life. Although our body's defense system filters out many foreign substances, studies indicate that nanoparticles can still enter the central nervous system through various pathways. How these tiny particles interact with nerve cells is not well understood; this is a big obstacle to using them widely for recording and stimulating neurons and assessing their impact on the central nervous system. This project has two main goals: (1) to understand how and why certain nanoparticles naturally bind to neurons as they grow and mature; and (2) to determine how this binding affects the electrical properties and activity of neurons. Understanding these interactions could lead to better-designed nanoparticles for studying the brain and new, less invasive technologies for treating nerve-related disorders. This project is an important step in filling in our knowledge gaps and could have a big impact on society by helping us deal with serious nerve-related conditions. The PIs will continue their ongoing successful recruitment and training of graduate and undergraduate students from underrepresented groups in STEM fields and will develop a Nano-Neuro Summer School program aimed at middle school students, targeting those from groups underrepresented in STEM.Owing to their optimal dimensions and unique biophysicochemical properties, nanoparticles offer distinct advantages as neural sensors and stimulators. However, the lack of understanding of the basic mechanisms of nano-neuro interactions remains a critical bottleneck in the widespread use of functional nanostructures for recording and stimulating neurons. The primary objective of this project is two-fold: (i) to understand the mechanistic aspects of spontaneous and maturation-dependent binding of nanoparticles to neurons; and (ii) to determine the effect of nanoparticle binding on the electrophysiological properties and electrical activity of neurons. To achieve these goals, the PIs will: (1) investigate the effect of the magnitude of the nanoparticle charge on the maturation-dependent binding of nanoparticles to neurons; (2) explore the effect of the electrophysiological properties and electrical activity of neurons on nanoparticle binding; and (3) elucidate the effect of nanoparticle binding on the excitability of neurons. Successful completion of this project will advance scientific understanding of the nano-neuro interactions and can have a transformative impact on the design and synthesis of nanomaterials for neuroscience and minimally-invasive technologies for treating neuronal disorders. This project can have an important long-term societal benefit in overcoming the burden associated with these devastating neuropathological conditions. The PIs will continue their ongoing successful recruitment and training of graduate and undergraduate students from underrepresented groups in STEM fields and will develop a Nano-Neuro Summer School program aimed at middle school students, targeting those from groups underrepresented in STEM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米颗粒表现出独特的物理和化学性质,是不同于他们的散装同行。由于其微小的尺寸和独特的性质,纳米粒子作为既可以感知又可以刺激神经细胞(神经元)的设备具有独特的优势。这些独特的特性也可以用来开发新技术,帮助我们了解大脑如何工作,并克服与大脑相关的疾病,如帕金森病和癫痫。此外,纳米材料在日常生活中越来越常见。虽然我们身体的防御系统可以过滤掉许多外来物质,但研究表明纳米颗粒仍然可以通过各种途径进入中枢神经系统。 这些微小的颗粒如何与神经细胞相互作用还不清楚;这是广泛使用它们记录和刺激神经元并评估它们对中枢神经系统影响的一大障碍。该项目有两个主要目标:(1)了解某些纳米粒子在生长和成熟时如何以及为什么与神经元自然结合;(2)确定这种结合如何影响神经元的电特性和活动。了解这些相互作用可能会导致更好地设计用于研究大脑的纳米颗粒,以及用于治疗神经相关疾病的新的侵入性较小的技术。这个项目是填补我们知识空白的重要一步,通过帮助我们处理严重的神经相关疾病,可能会对社会产生重大影响。 PI将继续成功招募和培训STEM领域代表性不足的研究生和本科生,并将开发针对中学生的Nano-Neuro暑期学校计划,目标群体是STEM领域代表性不足的群体。由于其最佳尺寸和独特的生物化学特性,纳米颗粒作为神经传感器和刺激器具有明显的优势。然而,缺乏对纳米神经元相互作用的基本机制的理解仍然是广泛使用功能性纳米结构记录和刺激神经元的关键瓶颈。该项目的主要目标是双重的:(i)了解纳米颗粒与神经元自发和成熟依赖性结合的机制方面;(ii)确定纳米颗粒结合对神经元电生理特性和电活动的影响。为了实现这些目标,PI将:(1)研究纳米颗粒电荷大小对纳米颗粒与神经元的成熟依赖性结合的影响;(2)探索神经元的电生理特性和电活动对纳米颗粒结合的影响;(3)阐明纳米颗粒结合对神经元兴奋性的影响。该项目的成功完成将促进对纳米神经元相互作用的科学理解,并可能对神经科学和治疗神经元疾病的微创技术的纳米材料的设计和合成产生变革性影响。该项目可以在克服与这些破坏性神经病理学状况相关的负担方面产生重要的长期社会效益。PI将继续成功招募和培训来自STEM领域代表性不足的群体的研究生和本科生,并将开发针对中学生的Nano-Neuro暑期学校计划,目标是来自STEM领域代表性不足的群体。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srikanth Singamaneni其他文献

Tension anisotropy drives fibroblast phenotypic transition by self-reinforcing cell–extracellular matrix mechanical feedback
张力各向异性通过自我强化的细胞-细胞外基质机械反馈驱动成纤维细胞表型转变
  • DOI:
    10.1038/s41563-025-02162-5
  • 发表时间:
    2025-03-24
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Farid Alisafaei;Delaram Shakiba;Yuan Hong;Ghiska Ramahdita;Yuxuan Huang;Leanne E. Iannucci;Matthew D. Davidson;Mohammad Jafari;Jin Qian;Chengqing Qu;David Ju;Dashiell R. Flory;Yin-Yuan Huang;Prashant Gupta;Shumeng Jiang;Aliza Mujahid;Srikanth Singamaneni;Kenneth M. Pryse;Pen-hsiu Grace Chao;Jason A. Burdick;Spencer P. Lake;Elliot L. Elson;Nathaniel Huebsch;Vivek B. Shenoy;Guy M. Genin
  • 通讯作者:
    Guy M. Genin
Deposition of parallel arrays of palladium nanowires and electrical characterization using microelectrode contacts
钯纳米线平行阵列的沉积和使用微电极接触的电学表征
  • DOI:
    10.1088/0957-4484/15/3/025
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Massood Z Atashbar;Deep Banerji;Srikanth Singamaneni;Valery Bliznyuk
  • 通讯作者:
    Valery Bliznyuk

Srikanth Singamaneni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srikanth Singamaneni', 18)}}的其他基金

Plasmon-enhanced Expansion FluoroSpot for Imaging and Quantifying Single Cell Protein Secretion
用于单细胞蛋白质分泌成像和定量的等离激元增强扩增 FluoroSpot
  • 批准号:
    2316285
  • 财政年份:
    2023
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
Plasmon-enhanced Lateral Flow Assay for Multiplexed Detection of SARS-CoV-2 RNA and Antigens in Point-of-Care Settings
等离激元增强侧流分析用于在护理点环境中多重检测 SARS-CoV-2 RNA 和抗原
  • 批准号:
    2224610
  • 财政年份:
    2022
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
RAPID: Plasmonically-enhanced Detection of Corona Virus Disease (COVID-19)
RAPID:冠状病毒病 (COVID-19) 的等离激元增强检测
  • 批准号:
    2027145
  • 财政年份:
    2020
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
CAREER: Plasmonic Nanoclusters with Built-in Artificial Antibodies for Label-free Biosensing
职业:具有内置人工抗体的等离激元纳米簇,用于无标记生物传感
  • 批准号:
    1254399
  • 财政年份:
    2013
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Continuing Grant

相似海外基金

Understanding the Fundamental Mechanisms Governing Tensile Strength of High-Performance Small-Scale Carbon/Glass Fibers
了解控制高性能小型碳/玻璃纤维拉伸强度的基本机制
  • 批准号:
    1915948
  • 财政年份:
    2020
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
Understanding Fundamental Mechanisms in Gas Sensing to Aid Future Design
了解气体传感的基本机制以帮助未来的设计
  • 批准号:
    2247996
  • 财政年份:
    2019
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Studentship
CAREER: Understanding the fundamental mechanisms of vesiculation and solute encapsulation of smectic phospholipid films on cellulose
职业:了解纤维素上近晶磷脂膜的囊泡化和溶质封装的基本机制
  • 批准号:
    1848573
  • 财政年份:
    2019
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Continuing Grant
GOALI: Enabling Ultra-Low Viscosity Lubricants Through Fundamental Understanding of Additive Interactions and Tribofilm Growth Mechanisms: An In-Situ Study
GOALI:通过对添加剂相互作用和摩擦膜生长机制的基本了解,实现超低粘度润滑剂:原位研究
  • 批准号:
    1728360
  • 财政年份:
    2017
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
Understanding the fundamental mechanisms of viral activation in the host
了解宿主病毒激活的基本机制
  • 批准号:
    418127-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding the Fundamental Mechanisms of Serrated Flow in BCC Alloys and their Impact on Mechanical Response: A Validated Mesoscopic Computational Study
了解 BCC 合金中锯齿状流动的基本机制及其对机械响应的影响:经过验证的介观计算研究
  • 批准号:
    1611342
  • 财政年份:
    2016
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
Understanding the fundamental mechanisms of viral activation in the host
了解宿主病毒激活的基本机制
  • 批准号:
    418127-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding the fundamental mechanisms of viral activation in the host
了解宿主病毒激活的基本机制
  • 批准号:
    418127-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding mass generation mechanisms of fundamental particles
了解基本粒子的质量生成机制
  • 批准号:
    FT130100303
  • 财政年份:
    2014
  • 资助金额:
    $ 57.07万
  • 项目类别:
    ARC Future Fellowships
EAGER: Understanding fundamental mechanisms involved in turbulence, current and wave interactions for offshore wind-turbines
EAGER:了解海上风力涡轮机湍流、水流和波浪相互作用的基本机制
  • 批准号:
    1348480
  • 财政年份:
    2013
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了