Understanding Fundamental Mechanisms that Underlie Nano-Neuro Interactions
了解纳米神经相互作用的基本机制
基本信息
- 批准号:2331330
- 负责人:
- 金额:$ 57.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nanoparticles exhibit unique physical and chemical properties that are distinct from their bulk counterparts. Because of their tiny size and unique properties, nanoparticles have unique advantages as devices that can both sense and stimulate nerve cells (neurons). These unique properties can also be harnessed to develop new technologies that will help us in understanding how the brain works and in overcoming brain-related conditions such as Parkinson’s disease and epilepsy. Furthermore, nanomaterials are increasingly becoming common in everyday life. Although our body's defense system filters out many foreign substances, studies indicate that nanoparticles can still enter the central nervous system through various pathways. How these tiny particles interact with nerve cells is not well understood; this is a big obstacle to using them widely for recording and stimulating neurons and assessing their impact on the central nervous system. This project has two main goals: (1) to understand how and why certain nanoparticles naturally bind to neurons as they grow and mature; and (2) to determine how this binding affects the electrical properties and activity of neurons. Understanding these interactions could lead to better-designed nanoparticles for studying the brain and new, less invasive technologies for treating nerve-related disorders. This project is an important step in filling in our knowledge gaps and could have a big impact on society by helping us deal with serious nerve-related conditions. The PIs will continue their ongoing successful recruitment and training of graduate and undergraduate students from underrepresented groups in STEM fields and will develop a Nano-Neuro Summer School program aimed at middle school students, targeting those from groups underrepresented in STEM.Owing to their optimal dimensions and unique biophysicochemical properties, nanoparticles offer distinct advantages as neural sensors and stimulators. However, the lack of understanding of the basic mechanisms of nano-neuro interactions remains a critical bottleneck in the widespread use of functional nanostructures for recording and stimulating neurons. The primary objective of this project is two-fold: (i) to understand the mechanistic aspects of spontaneous and maturation-dependent binding of nanoparticles to neurons; and (ii) to determine the effect of nanoparticle binding on the electrophysiological properties and electrical activity of neurons. To achieve these goals, the PIs will: (1) investigate the effect of the magnitude of the nanoparticle charge on the maturation-dependent binding of nanoparticles to neurons; (2) explore the effect of the electrophysiological properties and electrical activity of neurons on nanoparticle binding; and (3) elucidate the effect of nanoparticle binding on the excitability of neurons. Successful completion of this project will advance scientific understanding of the nano-neuro interactions and can have a transformative impact on the design and synthesis of nanomaterials for neuroscience and minimally-invasive technologies for treating neuronal disorders. This project can have an important long-term societal benefit in overcoming the burden associated with these devastating neuropathological conditions. The PIs will continue their ongoing successful recruitment and training of graduate and undergraduate students from underrepresented groups in STEM fields and will develop a Nano-Neuro Summer School program aimed at middle school students, targeting those from groups underrepresented in STEM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米颗粒具有独特的物理和化学特性,这些特性不同于其大体。由于其尺寸很小和独特的特性,纳米颗粒具有独特的优势,作为可以感知和刺激神经细胞(神经元)的设备。这些独特的特性也可以利用开发新技术,这些技术将有助于我们了解大脑的工作原理以及克服与大脑有关的疾病,例如帕金森氏病和癫痫。此外,纳米材料在日常生活中越来越普遍。尽管我们人体的防御系统会滤除许多异物,但研究表明,纳米颗粒仍然可以通过各种途径进入中枢神经系统。这些微小的颗粒与神经细胞的相互作用尚未得到充分了解。这是广泛使用它们来记录和刺激神经元并评估其对中枢神经系统的影响的大障碍。该项目有两个主要目标:(1)了解某些纳米颗粒在生长和成熟时如何自然与神经元结合; (2)确定这种结合如何影响神经元的电特性和活性。了解这些相互作用可能会导致精心设计的纳米颗粒,以研究大脑和新的,侵入性较小的技术来治疗与神经有关的疾病。该项目是填补我们的知识差距的重要一步,可以通过帮助我们应对严重的神经相关条件来对社会产生重大影响。 The PIs will continue their ongoing successful recruitment and training of graduate and undergraduate students from underrepresented groups in STEM fields and will develop a Nano-Neuro Summer School program aimed at middle school students, targeting those from groups underrepresented in STEM.Owing to their optimal dimensions and unique biophysicochemical properties, nanoparticles offer distinct Advantages as neurosensors and stimulators.但是,缺乏对纳米 - 尼罗相互作用的基本机制的理解仍然是在功能纳米结构记录和刺激神经元的宽度上的关键瓶颈。该项目的主要目的是:(i)了解纳米颗粒与神经元的赞助子和成熟依赖性结合的机械方面; (ii)确定纳米颗粒结合对电生理特性和神经元电活动的影响。为了实现这些目标,PI将:(1)研究纳米颗粒电荷对纳米颗粒与神经元成熟依赖性结合的影响; (2)探索电生理特性和神经元对纳米颗粒结合的影响; (3)阐明纳米颗粒结合对神经元刺激的影响。该项目的成功完成将进步对纳米 - 尼罗相互作用的科学理解,并可以对神经科学的纳米材料的设计和合成产生变革性的影响,用于治疗神经元疾病的神经科学和微创技术。该项目可以在克服与这些毁灭性神经病理学条件相关的燃烧方面具有重要的长期社会利益。 The PIs will continue their ongoing successful recruitment and training of graduate and undergraduate students from underrepresented groups in STEM fields and will develop a Nano-Neuro Summer School program aimed at middle school students, targeting those from groups underrepresented in STEM.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srikanth Singamaneni其他文献
Deposition of parallel arrays of palladium nanowires and electrical characterization using microelectrode contacts
钯纳米线平行阵列的沉积和使用微电极接触的电学表征
- DOI:
10.1088/0957-4484/15/3/025 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Massood Z Atashbar;Deep Banerji;Srikanth Singamaneni;Valery Bliznyuk - 通讯作者:
Valery Bliznyuk
Srikanth Singamaneni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srikanth Singamaneni', 18)}}的其他基金
Plasmon-enhanced Expansion FluoroSpot for Imaging and Quantifying Single Cell Protein Secretion
用于单细胞蛋白质分泌成像和定量的等离激元增强扩增 FluoroSpot
- 批准号:
2316285 - 财政年份:2023
- 资助金额:
$ 57.07万 - 项目类别:
Standard Grant
Plasmon-enhanced Lateral Flow Assay for Multiplexed Detection of SARS-CoV-2 RNA and Antigens in Point-of-Care Settings
等离激元增强侧流分析用于在护理点环境中多重检测 SARS-CoV-2 RNA 和抗原
- 批准号:
2224610 - 财政年份:2022
- 资助金额:
$ 57.07万 - 项目类别:
Standard Grant
RAPID: Plasmonically-enhanced Detection of Corona Virus Disease (COVID-19)
RAPID:冠状病毒病 (COVID-19) 的等离激元增强检测
- 批准号:
2027145 - 财政年份:2020
- 资助金额:
$ 57.07万 - 项目类别:
Standard Grant
CAREER: Plasmonic Nanoclusters with Built-in Artificial Antibodies for Label-free Biosensing
职业:具有内置人工抗体的等离激元纳米簇,用于无标记生物传感
- 批准号:
1254399 - 财政年份:2013
- 资助金额:
$ 57.07万 - 项目类别:
Continuing Grant
相似国自然基金
基于石墨间层质心插入理论的插层化学基本反应机制研究
- 批准号:22379110
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于体型结构单体的深度纯化介质构建机制与高纯洁净基本原理的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于体型结构单体的深度纯化介质构建机制与高纯洁净基本原理的研究
- 批准号:22208101
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于自我决定理论的基层医生服务动机内化对基本医疗服务质量的作用机制研究
- 批准号:72104195
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于自我决定理论的基层医生服务动机内化对基本医疗服务质量的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Fundamental Mechanisms Governing Tensile Strength of High-Performance Small-Scale Carbon/Glass Fibers
了解控制高性能小型碳/玻璃纤维拉伸强度的基本机制
- 批准号:
1915948 - 财政年份:2020
- 资助金额:
$ 57.07万 - 项目类别:
Standard Grant
Understanding Fundamental Mechanisms in Gas Sensing to Aid Future Design
了解气体传感的基本机制以帮助未来的设计
- 批准号:
2247996 - 财政年份:2019
- 资助金额:
$ 57.07万 - 项目类别:
Studentship
CAREER: Understanding the fundamental mechanisms of vesiculation and solute encapsulation of smectic phospholipid films on cellulose
职业:了解纤维素上近晶磷脂膜的囊泡化和溶质封装的基本机制
- 批准号:
1848573 - 财政年份:2019
- 资助金额:
$ 57.07万 - 项目类别:
Continuing Grant
GOALI: Enabling Ultra-Low Viscosity Lubricants Through Fundamental Understanding of Additive Interactions and Tribofilm Growth Mechanisms: An In-Situ Study
GOALI:通过对添加剂相互作用和摩擦膜生长机制的基本了解,实现超低粘度润滑剂:原位研究
- 批准号:
1728360 - 财政年份:2017
- 资助金额:
$ 57.07万 - 项目类别:
Standard Grant
Understanding the fundamental mechanisms of viral activation in the host
了解宿主病毒激活的基本机制
- 批准号:
418127-2012 - 财政年份:2017
- 资助金额:
$ 57.07万 - 项目类别:
Discovery Grants Program - Individual